The Optimal Waiting Time for Hamstring Peak Power after a Warm-Up Program with Static Stretching

B. Meric Bingul

University of Kocaeli, School of Physical Education and Sport, 41360, Kocaeli, Turkey
E-mail: bergunmeric@gmail.com

KEYWORDS Flexibility. Knee Flexors. Peak Torque. Resting Time

ABSTRACT The purpose of the present study is investigation of an ideal waiting time for hamstring muscle peak torque after the warm up program with static stretching exercises. The thirteen male students from Kocaeli University, School of Physical Education and Sport Department participated to this study voluntarily. Five different warm-up protocols were randomly applied to the subjects. The first protocol was five minutes jogging and the second was five minutes jogging with static stretching. The other protocols were five minutes jogging with static stretching + three minutes, six minutes and nine minutes waiting times. Following each warm-up session, the subjects’ hamstring muscle peak torque was tested on a Biodex system III dynamometer at angular velocities of 60 degree/second. Repeated measures of variance (ANOVA) in SPSS program were used to compare the data obtained from the five protocols. As a result of the study, the warm-up session that consisted of static stretching exercises has negative effects on hamstring peak power. However, this negative effect disappeared after the six minutes waiting time (p<0.05).

INTRODUCTION

Muscle stretching is a type of exercise and used as a part of a warm-up that tenses the soft tissue structures to enable greater mobility, leading to an increase in joint range of motion and flexibility (Murphy et al. 2010; Daneshmandy et al. 2011; Melo et al. 2014). However there are still questions about correct influence of stretching to utilize it in relation to the physical performance. While some studies in the literature indicated that static stretching has no negative effect on strength performance (Clark et al. 2014; Ribeiro et al. 2014), some other studies informed that it causes loss of force (Nelson et al. 2005; Kistler et al. 2010; Pasqua et al. 2014). This loss stems from mechanical and neural factors. The mechanical factors are changes in the viscoelastic properties of the musculotendinous unit (Janot et al. 2007) and temporary loss of muscular stiffness after stretching. In addition, neural factors are low neuromuscular activation, which decreases the motor unit activation and alters reflex sensitivity (Janot et al. 2007; Cagno et al. 2010). Although, most of the studies have found acute decreases in strength after stretching and that such decreases seem to be more prominent, the longer the stretching protocol, the number of exercises and sets, and the duration of each set, in general, exceeded the ranges normally recommended in the literature (Rubini et al. 2007). It has been suggested that static stretching routines should be avoided before practice or competition (Cagno et al. 2010). Besides, some studies state that decreases in strength can be eliminated by doing aerobic activities before and after static stretching (Murphy et al. 2010) or in combination with dynamic stretching (Morrin and Redding 2013). However, the negative effects of static stretching can be removed with a certain amount of waiting time. The detrimental effect of stretching on subsequent muscle performance dissipates over time. Torres et al. (2008) indicate that a 5 minutes-period or longer after upper body stretching may allow the body to dissipate any negative effects. Brandenburg et al. (2007) examined the effects of static stretching on counter movement jump performance and they found that the performance started to decrease after static stretching exercises and continued for 24 minutes. It is recommended to leave some recovery time to eliminate this negative effect after static stretching exercises (Torres et al. 2008). The purpose of the study is to explore an ideal waiting time for hamstring muscle peak torque after the warm up exercises with static stretching.
MATERIAL AND METHODS

Participants

The thirteen male students (mean ± SD age = 18.04±0.77 years; weight = 62.35± 6.48 kg; height = 1.73±0.06 m; training experiences= 5.46±2.52 years) at Kocaeli University, School of Physical Education and Sport Department, who had some football background, voluntarily participated in the study. The subjects had no significant history of recent major lower limb injury or disease.

Procedures

The study was conducted consistent with the recommendations of the Declaration of Helsinki. The subjects were informed about the risks and benefits of the study. During the period of the study, the subjects followed a normal diet. The day before the test, the subjects stayed away from alcohol, caffeine and ergogenic aids.

Five different warm-up protocols were randomly performed on nonconsecutive days (Fig. 1). The first protocol was a general warm-up that consisted of 5 minutes jogging (GWU), and the second consisted of GWU with static stretching (GWU+SS). The other protocols were GWU with static stretching + 3 minutes (GWU+SS+3 min), 6 minutes (GWU+SS+6 min) and 9 minutes waiting time (GWU+SS+9 min). In the static stretching protocol, 3 different exercises (Table 1) were worked out with two sets in 30 seconds for each muscle group. Resting time was decided as 12 seconds between the sets. The study took place over a session of 5 days and at the same time of the day. Following each warm-up session, the hamstring muscle peak torque was measured by using isokinetic dynamometer.

Measurement of Hamstring Muscle Power

Isokinetic measurement of concentric/concentric hamstring peak torque (PT) was measured using a Biodex System 3 isokinetic dynamometer (Biodex Medical Systems, Inc., Shirley, NY). This system has been previously described to produce valid and reliable measurements of torque and position (Chaouachi et al. 2010). The peak torques were taken in which the isokinetic dynamometer was set to an angular velocity of 60 degrees/second for the dominant leg. The subjects were seated in the dynamometer with their back in a neutral position. The non-dominant leg was placed on an adjustable pad and after a warm-up session, they were asked to move their legs forwards using maximal effort against the accommodating resistance at a

Table 1: Static stretching exercises

<table>
<thead>
<tr>
<th>1. Static stretch seated</th>
<th>The subjects sat on the floor with one leg stretched straight out and the other bent out of the way. They rotated the straight leg inwards and leaned forward at the hips to feel a stretch under the thigh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Flex and extend hamstring stretch</td>
<td>The subjects flexed their legs and bent forward from their knee joint, kept the back straight and extended their leg.</td>
</tr>
<tr>
<td>3. Forward Bend With Rounded Back</td>
<td>The subjects sat on the floor, extending both legs straight out in front of them, legs together. They folded the torso over thighs, gently rounding the back but keeping the legs straight.</td>
</tr>
</tbody>
</table>

Fig. 1. A summary of the experimental method
present speed and for three number of test repetitions. Peak torque of the flexor muscle group data was collected for evaluation.

Statistical Analysis

Descriptive statistics (mean ± SD) were formulated for the following variables: age, height, body and weight. Thus, the data was collected. The hamstring muscle peak torque performance was analyzed. Repeated measures of variance in SPSS (version 17.0) program were used to compare the data obtained from the 5 protocols. When a significant F value was achieved, post-hoc comparisons were accomplished via a Least Significant Difference (LSD) test to identify specific differences between WU conditions. The priori level of significance was set at 5 percent (p<0.05).

RESULTS

As a result of the study, according to the repeated measures of variance test results, the warming up session that consisted of static stretching exercises had a negative effect on hamstring muscle peak torque performance and it was calculated 4.87 percent reductions (p= 0.001) in the performance. However, this negative effect disappeared after the six minutes waiting time (F= 18.44, p< 0.001). It was observed that increments of 4.90 percent occurred after 6 minutes waiting time (p= 0.002) and increments of 3.99 percent after 9 minutes (p= 0.003) from the baseline (Fig. 2).

DISCUSSION

The results of many studies (Bradley et al. 2007; Pagaduan et al. 2012; Haddad et al. 2013; Babault et al. 2014; Costa e Silva et al. 2014) have manifested how static stretching affects the force performance negatively, especially stretching just before exercise which might cause temporary strength deficits. Negative acute effects of static stretching on maximal muscular performance tend to diminish with reduction of stretch duration (Simic et al. 2013). Some studies have concluded that no losses in strength are observed when durations are properly set. For instance, Rossi et al. (2010) indicated that stretching duration (60 x 30) did not appear to be a major influencing factor for the current strength reductions and recommended coaches and athletes to avoid flexibility training consisting of stretching repetitions of 30 seconds or longer prior to competitions. In addition, Ayala et al. (2012) found that short (2 x 30s per muscle group) pre-exercise active-static lower-limb stretching routine did not elicit stretching-induce reductions in knee flexor and knee extensor isokinetic concentric and eccentric strength.

Kay and Blazevich (2012) suggest the detrimental effects of static stretch are mainly limited
to longer durations (>60 s), which may not be typically used during pre-exercise routines in clinical, healthy, or athletic populations. Shorter durations of stretch (<60 s) can be performed in a pre-exercise routine without compromising maximal muscle performance. In another study, the peak force performance, decreased after 30 s and 60 s of quadriceps static stretching (8.5% and 16.0%, respectively), was reported for young adults (Siatras et al. 2008). Gonçalves et al. (2013) studied with the quadriceps muscle, which was stretched (knee flexion) for three sets of 30 s with 30 s rest intervals and the researchers found that a small amount of stretching of an agonist muscle (quadriceps) did not affect peak force, and peak rate of force development.

In the present study, a decrease of 4.87 percent was found in hamstring muscle peak power although the duration of stretching (2 x 30s per exercises) was not too long. This detrimental effect might be due to training with flexor muscle group (hamstring). Kay and Blazevich (2012) indicated that the knee flexors (82%) seemed to be more regularly influenced by stretch compared with the knee extensors (64%) and plantar flexors (62%). Two mechanisms have been proposed to explain the muscle strength deficit mediated by stretching: a) a structural mechanism involving changes in the muscle-tendon unit stiffness and compliance and b) a neural mechanism involving a decrease in muscle activation. A stiffer muscle-tendon unit would be more efficient during the initial transmission of force, thereby, increasing the rate of force development (Gonçalves et al. 2013). Nelson et al. (2005) suggested that increased muscular compliance as a result of stretching might mean the muscle would go through a greater period of unloaded shortening before taking up slack sufficiently to transfer the generated force to the bone. It is also possible that the recovery period between the end of the warm-up period and the start of the fitness test will influence performance (Thompson et al. 2007). There were different waiting times to obtain good performance in the literature. Chaouachi et al. (2010) studied the effect of warm-ups involving static or dynamic stretching on agility, sprinting, and jumping performance in trained individuals. They applied static stretching, an adequate warm-up and dynamic sport-specific activities to trained individuals with at least 5 or more minutes of recovery before their sport activity. Besides, Torres et al. (2008) indicate that the negative effects of static stretching leave the body after 5 minutes or longer. Bradley et al. (2007) suggest that if static stretching is essential before an event, coaches and athletes should ensure that stretching occurs at least 15 minutes prior performance. The neural activation recovers approximately 15 minutes after a static stretch. The literature seems to indicate that the neural effects are more transient (of shorter duration) or play a smaller or insignificant disruptive role than viscoelastic properties in static-stretch induced impairments (Belm and Chaouachi 2011). Mizuno et al. (2014) found that, the maximal voluntary contractions torque was significantly decreased immediately after, and 5 minutes after the static 5 minutes stretching intervention compared with the pre-intervention value (p<0.05), and this change recovered within 10 minutes. Their results suggest that the deficits of static stretching are disabled in a short time after static stretching.

In the present study, after the 6 minutes waiting time, the negative effects of static stretching disappeared and when it was compared to the baseline, increments of 4.90 percent occurred in the peak power of the hamstring muscle (p<0.05). The results were similar for the waiting time of 9 minutes (3.99 %).

CONCLUSION
The present study and the literature confirm that the relationships between warm-up, performance and interval time exist. For an ideal hamstring muscle peak torque performance, as indicated in the literature, stretching duration, the number of exercises and sets, and the duration of each set are remarkable and complete 6 minutes waiting time at least is also suggested before strength performance.

RECOMMENDATIONS
It is recommended not to choose static stretching exercises prior performances that require hamstring muscle strength. If required, it should be given at least 6 minutes waiting time before performance to allow disappearance of its negative effects.

ACKNOWLEDGEMENTS
Thanks to Murat Son for his assistance with the isokinetic strength testing.
REFERENCES


