Proteases as Targets in Anticancer Therapy Using Their Inhibitors

Syed Rakashanda and Shajrul Amin*

Department of Biochemistry, University of Kashmir, Srinagar 190 006, Jammu and Kashmir, India

KEYWORDS Proteases. Protease Inhibitors. Antitumor. Oncogen

ABSTRACT Proteases, also known as proteolytic enzymes, are enzymes that catalyze the breakdown of proteins by hydrolysis of peptide bonds. Earlier proteases were considered as only protein degrading enzymes, however now dramatically the view has changed. Proteases are extremely important signalling molecules that are involved in numerous vital processes like apoptosis, cell growth and activation, adhesion, invasion, cell migration and metastasis, protein secretion, cellular interactions and signal transduction, phagocytosis and angiogenesis. Thus, show complete anticancer mechanism. And proteases from all six classes have been found to be involved in tumor growth and progression. Inhibitors of such proteases are emerging with promising therapeutic uses in the treatment of cancer. Protease inhibitor suppression of carcinogenesis is related to ability to effect the expression of certain oncogens and the levels of certain types of proteolytic activities. Protease inhibitors being found to be as special agents in anticancer therapy have been isolated from plants, bacteria and prepared synthetically. Under the same trend different protease inhibitors have been used and are being in clinical and pre-clinical stage. Thus, studying PIs as anticancer agents open a new field for treatment of cancer.

INTRODUCTION

From the literature available it is clear that all five major classes of proteases are involved in tumor growth and progression. Protease enzymes selectively catalyzing the hydrolysis of polypeptide bond are crucial for disease propagation and inhibitors of such proteases are emerging with promising therapeutic uses in the treatment of diseases like cancers. Inhibitors of these proteases can suppress several stages of carcinogenesis including initiation, promotion and progression although their mechanism of action is not yet fully clear. Studies have suggested that the protease inhibitors which prevent carcinogenesis affect processes in the early stages of carcinogenesis although they can be effective at long times period after carcinogen exposure in both in vitro and in vivo systems, while there is a strong evidence that these protease inhibitors can affect both the initiation and promotion stages of carcinogenesis and they have no effect on already transformed cells. Results have suggested that the first event in carcinogenesis is a high frequency epigenetic event and that a later event, presumably genetic, leads to the malignant state. Effect of protease inhibitors on the following phenomenon are thought to be related to their anti carcinogenic activity:

1) Ability to effect the expression of certain oncogenes,
2) Ability to return carcinogen increased levels of certain proteolytic activities for example, Boc-val-pro-arg-Mca hydrolyzing activity to normal levels (Kennedy 1993).

Clawson, 1996 categorized the effects of Protease Inhibitors into three basic groups:

a) Signal transduction pathways
b) DNA repair processes
c) Nuclear proteases

From the studies it is simply clear that protease inhibitors can be used as drugs to treat the various tumor patients. Under the same studies different protease inhibitors have been used in clinical and pre-clinical stage. Many new ECP (Extra Cellular Proteases) inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years.

Protease Inhibitors and Antitumorigenesis

PI (Protease inhibitor) represent an important role in regulation of various cellular physiological and biological processes, including cell cycle, cell death, differentiation and the immune response (Fan et al. 2001; Buhling et al. 2006). Previous studies have shown the anticancer effect and probable mechanisms of the natural and chemical PI in vitro.
Many tumor promoters are inflammatory agents that stimulate the formation of oxygen radicals (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$) in phagocytic neutrophils. The neutrophils use the oxygen radicals to kill bacteria, which are recognized by the cell membrane of the phagocytic cells causing a signal to mount the oxygen response. The tumor promoter from croton oil, 12-0-tetradecanoylphorbol-3-acetate (TPA), mimics response. The tumor promoter from croton oil, 12-0-tetradecanoylphorbol-3-acetate (TPA), mimics response. The tumor promoter from croton oil, 12-

Oxygen radicals cause single strand breaks in the DNA and modify DNA bases. These damaging reactions appear to be related to tumor promotion, as chemopreventive agents like protease inhibitors, suppress the induction of oxygen radicals in phagocytic neutrophils and suppress tumor promotion in skin cancer in mice. Protease inhibitor was a novel entry into the group of agents that suppress the oxygen response of phagocytes. Protease inhibitors capable of inhibiting chymotrypsin show a greater suppression of the oxygen effect and are better suppressors of tumor promotion. Thus the Bowman-Birk soybean inhibitor, which is more powerful inhibitor of chymotrypsin than the Kuintz soybean inhibitor, showed 7-fold greater suppression of O$_2^-$ produced by TPA in neutrophils than the Kuintz inhibitor (Yavelow 1985). The most powerful inhibitor is the potato inhibitor 1 PI 1, which exclusively inhibits chymotrypsin (Walter 1989). Indeed Yavelow (1987) have identified a chymotrypsin-type enzyme in the cell membrane of 10T1/2 cell, which may act as a receptor for the localization of protease inhibitor with inhibitory properties to chymotrypsin. BBI the soybean derived proteases inhibitor that has been extensively studied as this is the proteases inhibitor that has risen to the human trial stage as a human cancer chemopreventive agent (Fernandes and Benerji 1997). Bowman-Birk Inhibitor concentrate shows promise to become an effective nontoxic chemopreventive agent based on results of extensive preclinical studies, and Phase I and Phase IIa clinical trials (Wan et al. 2002; Armstrong et al. 2003). Recently Bowman-Birk protease inhibitor isolated from Vigna unguiculata seeds is showing apoptosis and lysosome membrane permeabilization induction on breast cancer cell (Joinitti et al. 2010). Lunasin a bioactive cancer preventive agent in Soy Bowman Birk Inhibitor Concentrate (BBIC) is made bioavailable after oral administration by Bowman-Birk Inhibitor (Hseih et al. 2010).

Berkelic acid effectively inhibited MMP-3 in the micromolar range and caspase-1 in the millimolar range. Berkelic acid was tested in the National cancer Institute (NCI) antitumor screen against 60 human cell lines. It showed selective activity towards ovarian cancer OVCAR-3 (Andrea 2006).

Cysteine proteases, in particular cathepsins B and L, have been implicated in tumor invasion and are thought to be important mediators of metastasis. H-59 carcinoma cells which are highly invasive and preferentially metastatic to the liver, express high levels of cathepsin L and lower levels of cathepsin B, whereas M-27 cells which are less invasive and only moderately metastatic to lung express cathepsin B only. Navab et al. (1997) studied the effect of cysteine proteinase inhibitor by using a reconstituted basement membrane matrigel invasion assay and found that E-64 blocked the invasion of H-59 cells under conditions which didn’t affect cell viability. Minor but significant inhibitory effect up to 32% was also seen with the propeptide cathepsin B, implicating this enzyme in the invasion process. Treatment of H-59 cells with E-64 inhibited experimental liver metastasis formation by up to 90%. On the other hand invasion of M-27 cells could not be blocked by cysteine proteases inhibitors even under conditions which resulted in complete abrogation of intercellular enzymatic activity.

Beta-ursolic acid isolated from Salvia officinalis by Jednak et al. (2006), significantly inhibited all tested proteases in vitro in the micromolar range. Beta-ursolic acid showed the strongest inhibition activity to urokinase IC$_{50}$=12 µM and cathepsin B IC$_{50}$=10 µM as proteases included in tumor invasion and metastasis indicated possible anticancer affectivity. Beta-ursolic acid significantly decreased the number of B16 colonies in the lungs of mice at the dose of 50mg/kg p<0.05. Another novel discovery was that of urinary trypsin inhibitor. It inhibits urokinase type plasminogen activator (UPA), a proteolytic enzyme mediating metastasis. UPA secreted by tumor cells can be bound to a cell surface receptor via a growth factor- like domain within aminoterminal fragment (ATF) of the uPA molecule with high affinity. Urinary trypsin inhibitor (UTI) efficiently inhibits the soluble and the tumor cell surface receptor- bound plasmin and subsequently reduces tumor cell invasion and the formation of metastasis (Hiroshi 1995).
A synthetic protease inhibitor FOY-305 (FOYPAN) not only inhibited the skin tumorigenesis in mice but also suppressed the growth of autochthonous solid tumor in mice. Furthermore, administration of FOY-305 inhibited the metastasis of Lewis lung carcinoma and colon adenocarcinoma to the lung in mice, experimentally and spontaneously. Clinically, FOY-305 prevented both recurrence and metastasis in the patients who has received many anticancer drugs. Ohkioshi (1981) suggested that there is possibility for applying a new type of chemotheraphy using protease inhibitors. Oral administration of a synthetic protease inhibitor [N, N-dimethyl carbamylmethyl 4-4-guanidinobenzoyloxyphenylacetate] methanesulfate, was used to challenge 3-methylcholanthrene induced carcinoma. Administration of more than 50.0 mg/kg of this protease inhibitor significantly inhibited tumor growth and prolonged the survival time of cancer harbouring animals (Ohkioshi 1995).

Widely distributed in human tissue, mammary serine protease inhibitor (maspin) is a member of the serine protease inhibitor superfamily (Khalkhali-Ellis 2006). Maspin is localized at chromatin 18q21.3, a region that often undergoes loss of heterozygosity in some forms of human cancers, suggesting its potential role in carcinogenesis (Schneider et al. 1995). In 1994, maspin initially was identified by Zou et al. as a putative tumor-suppressor gene in breast carcinoma. Since then, maspin has been reported sequentially as the metastasis-suppressive activity of maspin (Maass et al. 2000; Cai et al. 2009). The switch of cellular metabolic phenotype to low glycolysis by the gain of maspin significantly inhibited tumor growth and prolonged the survival time of cancer exhibiting animals (Ohkioshi 1981). The use of novel, non-classical anticancer agents such as MMP inhibitors represent a new and potentially effective approach. AG3340 Prinomastat is targeted against MMP1 with specificity directed against MMP2 and MMP-9 and this agent has been evaluated in two trials of patients with stage IIIB and IV NSCLC (Shepherd, 2001. The MMP-1-PAR1 axis is involved in EOC invasion and at least partially mediates LPA-induced EOC invasion and also human gliomas (Wang et al. 2010; Zang et al. 2010). Therefore, blocking MMP-1 or PAR1 may represent a new therapeutic option for metastatic EOC (Wang et al. 2010).

Tanomastat is a MMPs inhibitor that has preclinical activity in ovarian cancer models. It is a novel and specific non-peptidic biphenyl MMP inhibitor against several. MMPs implicated in tumor progression (Rowinsky et al. 2000). BMS-275291, an orally bio-available MMP inhibitor currently under development, has been shown to decrease the overall tumor burden in several animal models (Poulaki 2002). It is the newest MMP1 to be evaluated in lung cancer. It is a broader spectrum with activity against MMPs 1, 2, 8, 9, 13, 14 and to some extent MMP3. MMP inhibitors MMP1 are primarily considered to have anti-proliferative rather than direct cytotoxic effects.

Neovastat AE-941 is a shark cartilage extract, which has activity against MMP-2 and MMP-12. Clinical benefits observed upon Neovastat treatment rely on the presence of multiple angiogenesis inhibitors including inhibitors of MMP activities (Gingras et al. 2001). Neovastat specifically stimulates tPA-dependent plasmin generation through an increase in the affinity of the enzyme towards plasminogen apart from its stimulatory effect on tPA activity, neovastat also markedly stimulates tPA expression in endothelial cells through an increase in the transcription of the tPA gene (Gingras et al. 2004). Anginex is a potent inhibitor of EC adhesion, migration and angiogenesis inhibitors including inhibitors of MMP activities (Gingras et al. 2001). Neovastat specifically stimulates tPA-dependent plasmin generation through an increase in the affinity of the enzyme towards plasminogen apart from its stimulatory effect on tPA activity, neovastat also markedly stimulates tPA expression in endothelial cells through an increase in the transcription of the tPA gene (Gingras et al. 2004).
The proteasome is a ubiquitous enzyme complex that plays a critical role in the degradation of many proteins involved in cell cycle regulation, apoptosis, and angiogenesis. Since these pathways are fundamental for cell survival and proliferation, particularly in cancer cells, the inhibition of proteasome is an attractive potential anticancer therapy. Bortezomib (Velcade), formerly PS-341 is an extremely potent and selective proteasome inhibitor that shows strong activity in vitro and in vivo laboratory studies against many solid and hematologic tumor types. Moreover, bortezomib, mainly by inhibition of the NF-κB pathway, has a chemosensitizing effect when administered together with other antitumoral drugs. Clinical phase I trials, showed good tolerance of bortezomib at doses that achieved a desired degree of proteasome inhibition. Phase II studies showed high response rates in refractory multiple myeloma patients, which led to the accelerated approval of bortezomib by the Food and Drug Administration FDA and the European Medicines Agency EMEA for this indication. A phase III trial comparing bortezomib to dexamethasone in refractory/relapsed multiple myeloma patients had to be halted due to a survival advantage in the bortezomib arm. Additional studies are focusing in the potential benefit of bortezomib in newly diagnosed multiple myeloma patients. In other solid and hematologic malignancies, phase II studies with bortezomib alone or in combination are ongoing with encouraging results, particularly in lung cancer and lymphoma (Montagut et al. 2006). Old drug disulfiram a proteasome inhibitor which was used in the extracellular matrix molecule, collagen. This allows it to fit tightly in the active site of the enzyme. The hydroxamate group -CONHOH of the batimastat molecule binds to the zinc atom in the active site resulting in potent but reversible inhibition of the metalloproteinase. Other ‘zinc chelating’ groups have been employed in related inhibitors. These include thiol (Darlak 1990) and carboxyl groups. Modifications to other groups have led to the development of gelatinase-selective inhibitors. This work has been aided by the availability of X-ray crystallography data on the mammalian matrix metallo-proteinases (Bode 1994). Six month toxicology studies have been completed for batimastat in two species, without significant adverse effects in the intended pharmacokinetic range. This is an encouraging indication of the relative safety of MMPI therapy.

The proteasome is a ubiquitous enzyme complex that plays a critical role in the degradation of many proteins involved in cell cycle regulation, apoptosis, and angiogenesis. Since these pathways are fundamental for cell survival and proliferation, particularly in cancer cells, the inhibition of proteasome is an attractive potential anticancer therapy. Bortezomib (Velcade), formerly PS-341 is an extremely potent and selective proteasome inhibitor that shows strong activity in vitro and in vivo laboratory studies against many solid and hematologic tumor types. Moreover, bortezomib, mainly by inhibition of the NF-κB pathway, has a chemosensitizing effect when administered together with other antitumoral drugs. Clinical phase I trials, showed good tolerance of bortezomib at doses that achieved a desired degree of proteasome inhibition. Phase II studies showed high response rates in refractory multiple myeloma patients, which led to the accelerated approval of bortezomib by the Food and Drug Administration FDA and the European Medicines Agency EMEA for this indication. A phase III trial comparing bortezomib to dexamethasone in refractory/relapsed multiple myeloma patients had to be halted due to a survival advantage in the bortezomib arm. Additional studies are focusing in the potential benefit of bortezomib in newly diagnosed multiple myeloma patients. In other solid and hematologic malignancies, phase II studies with bortezomib alone or in combination are ongoing with encouraging results, particularly in lung cancer and lymphoma (Montagut et al. 2006). Old drug disulfiram a proteasome inhibitor which was used
for about 50 years in treatment of alcoholism have been successfully used to suppress hepatic metastasis originating from ocular melanoma. The inhibitory potency of disulfiram against the proteasome conforms to current anticancer strategies and represents a new, promising approach to proteasome inhibition (Cvek 2008).

CONCLUSION

In the face of such very strong evidence for proteolytic enzymes being crucial mediators of mammalian physiology and disease, it is not surprising that there has been extensive research activity and resources targeted to the development of potent and selective protease inhibitors, particularly over the last 15 years. However what is surprising is that so few compounds have actually arrived in the marketplace to date and one important being bortezomib. Bortezomib may be the “backbone” for the development of more effective treatment strategies to improve patient outcome in multiple myeloma. Although many compounds have entered clinical trials over the past 5 years since, most have not progressed as expected. In other numerous studies, the role of natural and chemical PIs in cancer have been reported in vitro and in vivo, but there is little information about the use of these compounds in inhibiting cancer in humans and the mechanism of their action. Thus, it will be a wide open spectrum of biological and clinical studies.

ACKNOWLEDGEMENTS

The authors express gratitude to University of Kashmir, Srinagar for providing financial assistance and to the department of Biochemistry for the infrastructure.

REFERENCES

