Proximate Composition, Available Carbohydrates, Dietary Fibre and Anti Nutritional Factors of Selected Traditional Medicinal Plants

Anita Kochhar*, Malkit Nagi and Rajbir Sachdeva

Department of Food and Nutrition, College of Home Science, Punjab Agricultural University, Ludhiana, Punjab, India

KEYWORDS Traditional Medicinal Plants, Dietary Fibre, Available Carbohydrate, Antinutritional Factors

ABSTRACT Three traditional medicinal plants known for their hypoglycemic action namely bittergourd, fenugreek seeds and jambu seeds were analysed for proximate composition, available carbohydrates, dietary fibres and antinutritional factors. Protein, fat, ash, crude fibre, carbohydrate and energy content of these medicinal plants ranged from 4.16 to 25.80, 0.49 to 6.53, 2.16 to 9.89, 1.28 to 10.92, 58.13 to 90.85 percent and 319.11 to 394.46 kcal respectively. Total soluble sugars, reducing sugars, non-reducing sugars and starch content varied from 2.03 to 11.76, 0.78 to 4.43, 1.03 to 8.0 and 29.20 percent respectively. Dietary fibre constituents like NDF, ADF, hemicellulose, cellulose, lignin, pectin, total dietary fibre varied from 21.90 to 39.66, 2.35 to 13.46, 8.44 to 34.75, 1.46 to 8.23, 0.36 to 2.95, 22.4 to 40.38 percent respectively. Phytic acid, phytin phosphorus, polyphenol and saponin content of these three medicinal plants varied from 12.90 to 549, 3.63 to 154.7, 103.8 to 361.40, 214.53 to 1646.58 percent respectively. It was found that these plants are good source of protein, fat, minerals, crude fibre and energy. They are rich source of available carbohydrates and dietary fibre. They also contain anti-nutrient content which help in controlling blood sugar. Thus, it was concluded that these hypoglycemic traditional medicinal plants provide various nutrients which are not provided by allopathic medicine and these plants have no side effects. So, the diabetic patients should be encouraged to include these medicinal plants in their daily diet to control blood sugar level.

INTRODUCTION

The incidence of diabetes mellitus is increasing all over the world and is becoming a problem of significant importance in the affluent societies. Oral hypoglycemic drugs have been frequently used for controlling non-insulin dependent diabetes mellitus but allopathic medicines have side effects.

Medicinal plants and herbs are of great importance to the health of individuals and communities. Despite the existence of herbal medicines over many centuries, only relatively small number of plant species have been studied for their application. However, in the recent past, an increasing research evidence is getting accumulated, which clearly indicate the positive role of traditional medicinal plant in the prevention or control of some metabolic disorders like diabetes, heart diseases and certain types of cancers (Zhang, 1996). One of the great advantage of these medicinal plant is that these are easily available and have no side effects (Mehta, 1982).

A scientific investigation of traditional herbal remedies for metabolic disorders may provide valuable lead for the development of alternative drug and therapeutic strategies. Various workers have reported the hypoglycemic and hypolipidemic effect of various traditional medicinal plants like fenugreek, jambu and bittergourd. But there is limited information on the nutritional and anti-nutritional factors of these three medicinal plants which lowers the blood glucose and lipid profile. The work is thus, aimed at determining the chemical composition, available carbohydrates, dietary fibre and anti-nutritional factor of traditional medicinal plants.

MATERIAL AND METHODS

Procurement and Processing of the Material: The raw materials, bittergourd fruit (Momordica Charantia), fenugreek seeds (Trigonella foenum, graceum) and jambu seeds (Euglnia jambolana) were procured from local market of Ludhiana city in one lot.

Bittergourd: Fresh immature bittergourd fruit
were washed in clean water and water was wiped out with clean muslin cloth and were cut into small pieces by stainless steel knife and then dried in oven at 60 to 65°C till complete drying and then converted to the fine powder of 60 mesh sieve size in cyclotec mill. The fine powder of bittergourd was stored in airtight plastic container.

Fenugreek Seeds: Foreign materials were removed from fenugreek seeds and these seeds were washed in clean water to remove the dust. The seeds were soaked in equal volume of water for overnight and excess water was drained off. The soaked seeds were dried in oven at 60-65°C till complete drying and ground to fine powder. The fine powder of fenugreek seeds was stored in air tight plastic container.

Jambu Seeds: The pulp of jambu fruit was removed with stainless steel knife and seed coat was removed. The seed kernels were dried in an oven at 60-65°C till complete drying and ground to fine powder of 60 mesh sieve size in cyclotec mill and stored in air tight plastic container.

Chemical Composition: The contents of moisture, crude protein (N x 6.25) extractable fat, crude fibre and total ash were determined as described in the AOAC (1990). Total carbohydrate and energy content was calculated by the method of AOAC (1990).

Available Carbohydrates: Extraction of water soluble sugar other than starch was carried out by the method of Corning and Guilhot (1973). Total soluble sugar in the above solution was estimated by method of Yemen and Willis (1987). Reducing sugars were estimated by the method of Nelson (1944). The content of non-reducing sugar was calculated from the difference between soluble sugar and reducing sugar. Starch was estimated by the method of Clegg (1956).

Dietary Fibre Constituents: Neutral detergent fibre, Acid detergent fibre, Hemicellullose, Cellulose, Lignin were determined by method described by Van Soest and Wine (1967), modified by Arora (1981). Total pectin was determined by the method Ranganna (1977).

Anti-nutritional Factors: Phytic acid content was determined by the method of Hang and Lantz (1983). Polyphenolic compounds were extracted from the sample by the method of Singh and Jambunathan (1981). The amount of phenolic compounds were estimated as tannic acid equivalent according to Folin Denis procedure given by Swain and Hills (1959).

RESULTS AND DISCUSSION

Proximate Composition: The proximate composition of different traditional medicinal plants are given in Table 1. Moisture content of medicinal plants ranged from 11.76 percent in fenugreek seeds to 93.43 percent in bittergourd (Table 1). Moisture content of these medicinal plants differed significantly (P<0.01) from each other. Gopalan et al. (1992) reported almost similar moisture content of bittergourd and

<table>
<thead>
<tr>
<th>Medicinal plants</th>
<th>Moisture (g/100g)</th>
<th>Crude protein (g/100g)</th>
<th>Extractable fat (g/100g)</th>
<th>Ash (g/100g)</th>
<th>Crude fibre (g/100g)</th>
<th>Total CGO (g/100g)</th>
<th>Energy (kcal/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bittergourd</td>
<td>93.43±0.86</td>
<td>20.53±0.46</td>
<td>0.49±0.02</td>
<td>9.89±0.9</td>
<td>10.92±0.08</td>
<td>58.17±0.65</td>
<td>319.11±0.62</td>
</tr>
<tr>
<td>Fenugreek seeds</td>
<td>11.76±0.26</td>
<td>25.8±0.16</td>
<td>6.53±0.17</td>
<td>3.26±0.20</td>
<td>6.28±0.85</td>
<td>58.13±0.21</td>
<td>394.46±1.3</td>
</tr>
<tr>
<td>Jambu seeds</td>
<td>40.86±0.25</td>
<td>4.16±0.13</td>
<td>1.55±0.25</td>
<td>2.16±0.12</td>
<td>1.28±0.62</td>
<td>90.85±0.18</td>
<td>393.96±0.34</td>
</tr>
</tbody>
</table>

Values are mean±S.D. of three replicates
*** Significant at 1% level
** Significant at 5% level
NS Non significant
a>b>c
fenugreek seeds. Jambu seeds contained minimum crude protein (4.16%) while fenugreek seeds were richest source of it (25.8%) followed by bittergourd (20.53%). There was significant differences (P<0.01) in protein content of these medicinal plants. Ether extractable fat content of medicinal plants ranged from 0.49 to 6.53 percent in bittergourd and fenugreek seeds, respectively. Significant differences (P<0.01) were found in fat content of these medicinal plants. Ash content of bittergourd fruit was maximum (9.89%) while it was lowest in jambu seeds (21.6%). Significant differences (P<0.05) were found in ash contents of these medicinal plants. Crude fibre content of medicinal plants ranged from 1.28 (jambu seeds) to 10.92 percent (bittergourd fruit). Crude fibre content of medicinal plants was significantly (P<0.01) different from each other. Total carbohydrate content ranged from 58.13 in fenugreek seeds to 90.85 percent in jambu seeds. Non-significant differences were found in carbohydrate content of bittergourd and fenugreek seeds while significant (P<0.01) difference was found when carbohydrate content of jambu seeds was compared with bittergourd and fenugreek seeds. The energy value of bittergourd was significantly different from fenugreek and jambu seeds while non-significant differences in energy intake of jambu seeds and fenugreek seeds. Gopalan et al. (1992) reported slightly higher amount of moisture and fibre and slightly less protein, fat, minerals, carbohydrate and energy content in fenugreek seeds. Similar amount of carbohydrates and protein in fenugreek seeds was also reported by Saibaba and Raghuram (1997).

Available Carbohydrates: Table 2 presents the available carbohydrate contents of these medicinal plants. Total soluble sugar content of medicinal plants ranged from 2.03 (bittergourd fruit) to 11.76g/100g (jambu seeds) on dry weight basis. Significant (P<0.01) differences were found between total soluble sugar content of different medicinal plants. Reducing, non-reducing and starch content of medicinal plants varied from 0.78 to 4.43, 1.03 to 8.0 and 4.33 to 29.20g/100g dry weight basis respectively. Significant differences (P<0.01) were found in content of reducing, non-reducing sugar and starch content of different medicinal plants except non-significant difference was found in content of reducing sugar of bittergourd and fenugreek seeds. Lower total, reducing and non-reducing sugar and almost similar starch content of fenugreek seed has been reported early by Elmandy and Sebaiy (1983). While higher total sugar content of fenugreek seeds has also been reported earlier by Singh et al. (1994) and lower starch content (0.32%) has been reported earlier by Nahar et al. (1993).

Dietary Fibre Constituents: Table 3 presents the dietary fibre constituents of these medicinal plants. Neutral detergent fibre (NDF), acid detergent fibre (ADF) content of medicinal plants ranged from 21.90 to 39.66 and 2.35 to 13.46g/100g on dry weight basis respectively. Hemicellulose, cellulose, lignin, pectin content of these medicinal plants varied from 8.44 to 34.75, 1.46 to 8.23, 0.38 to 5.18 and 0.36 to 2.95g/100g respectively. Total dietary fibre content of jambu seeds was maximum (40.38g/100g) while it was minimum in bittergourd (22.4g/100g). NDF content of these medicinal plants varied from 8.44 to 34.75, 1.46 to 8.23, 0.38 to 5.18 and 0.36 to 2.95g/100g respectively. Total dietary fibre content of jambu seeds was maximum (40.38g/100g) while it was minimum in bittergourd (22.4g/100g). NDF content of these medicinal plants was significantly different (P<0.01). Similarly ADF and hemicellulose content of these medicinal plants were also significantly (P<0.01) different. Significant differences were found in cellulose content of bittergourd-gourd fruit, fenugreek seeds and jambu seeds. Lignin

Table 2: Available carbohydrate content of medicinal plants.

<table>
<thead>
<tr>
<th>Medicinal plants</th>
<th>Total soluble sugars</th>
<th>Reducing sugars</th>
<th>Non reducing sugars</th>
<th>Starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bittergourd fruit</td>
<td>2.03±0.12^c</td>
<td>1.0±0.81^b</td>
<td>1.03±0.12^c</td>
<td>4.33±0.19^c</td>
</tr>
<tr>
<td>Fenugreek seeds</td>
<td>8.78±0.90^b</td>
<td>0.78±0.98^b</td>
<td>8.00±0.82^a</td>
<td>20.83±0.40^a</td>
</tr>
<tr>
<td>Jambu seeds</td>
<td>11.76±0.20^a</td>
<td>4.43±0.12^c</td>
<td>7.73±0.12^a</td>
<td>29.20±0.75^a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t-value</th>
<th>Bittergourd vs</th>
<th>Fenugreek seeds</th>
<th>Bittergourd vs</th>
<th>Jambu seeds vs</th>
<th>Fenugreek seeds vs jambu seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62.12***</td>
<td>2.36 NS</td>
<td>66.09***</td>
<td>52.47***</td>
<td>18.79***</td>
</tr>
</tbody>
</table>

Values are mean ±S.D. of three replicates
*** Significant of 1% level
** Significant of 5% level
NS Non significant
a>b>c
content of bittergourd fruit was maximum 5.18 and minimum in fenugreek seeds 0.38 followed by jambu seeds 1.33g/100g and lignin content of these medicinal plants were significantly (P<0.01) different. Pectin content was higher 2.95g/100g in fenugreek seeds and minimum in bittergourd 0.36g/100g followed by jambu seeds 1.76g/100g.

Gopalan et al. (1992) reported 41g total dietary fibre for fenugreek seeds. Studies conducted at NIN reported that fenugreek seeds contained very high amount of total dietary fibre content (48g/100g). Udayasekhra Rao and Ramulu (1998) reported that fenugreek seeds were the only among the food analysed that contained 20 percent soluble fibre. Dietary fibre content 5%, NDF 2.27%, ADF 1.47% and lignin 0.44% of bittergourd on fresh weight basis has been reported earlier by Sreedevi and Chaturvedi, (1993). Osman, (1990) reported that bittergourd contained 4.21 lignin/100g. Higher total dietary fibre content 68.59% of bittergourd has been reported earlier by Nahar et al. (1993).

Antinutritional Factors: Table 4 presents the data about antinutritional factors present in the medicinal plants. Phytic acid and phytin phosphorus contents ranged from 12.90 (bittergourd) to 549mg/100g (fenugreek) and 3.63(bittergourd) to 154.70 (fenugreek) mg/100g respectively. Significant (P<0.01) differences were obtained in phytic acid content of these medicinal plants. Similarly phytin phosphorus was also found significantly different. Gopalan et al. (1992) reported almost similar phytin phosphorus content in fenugreek seeds and Singh et al. (1994) observed the lower phytic acid in fenugreek seeds. Polyphenol content varied from 103.81 (bittergourd) to 361.60 (jamun seeds) mg/100g dry weight basis. Non-significant differences were found in polyphenol content of bittergourd fruit and fenugreek seeds. Highly significant (P<0.01) differences were found when polyphenol content of jambu seeds was compared with bittergourd and fenugreek

Table 3: Dietary fibre constituents of medicinal plants.

<table>
<thead>
<tr>
<th>Medicinal plants</th>
<th>NDF</th>
<th>ADF</th>
<th>Hemicellulose</th>
<th>Cellulose</th>
<th>Lignin</th>
<th>Pectin</th>
<th>Total dietary fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bittergourd fruit</td>
<td>21.90±0.22</td>
<td>13.46±0.12</td>
<td>8.44±0.33</td>
<td>8.23±0.17</td>
<td>5.18±0.62</td>
<td>0.36±0.48</td>
<td>22.4±0.15</td>
</tr>
<tr>
<td>2. Fenugreek seeds</td>
<td>35.15±0.40</td>
<td>2.35±0.41</td>
<td>32.80±0.39</td>
<td>1.46±0.94</td>
<td>0.38±0.21</td>
<td>2.95±0.01</td>
<td>35.29±0.36</td>
</tr>
<tr>
<td>3. Jambu seeds</td>
<td>39.66±0.94</td>
<td>4.91±0.62</td>
<td>34.75±0.70</td>
<td>3.71±0.62</td>
<td>1.33±0.17</td>
<td>1.76±0.34</td>
<td>40.38±0.28</td>
</tr>
</tbody>
</table>

t-value

- Bittergourd vs fenugreek seeds: 85.22***
- Bittergourd vs jambu seeds: 105.94***
- Fenugreek seeds vs jambu seeds: 60.78***

Values are mean±S.D. of three replicates
*** Significant at 1% level

Table 4: Antinutritional content of medicinal plants.

<table>
<thead>
<tr>
<th>Medicinal plants</th>
<th>Phytic acid</th>
<th>Phytin phosphorus</th>
<th>Polyphenol</th>
<th>Saponin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bittergourd fruit</td>
<td>12.90±0.29</td>
<td>3.63±0.08</td>
<td>103.81±0.10</td>
<td>214.53±0.78</td>
</tr>
<tr>
<td>2. Fenugreek seeds</td>
<td>549.0±0.37</td>
<td>549.7±0.25</td>
<td>105.35±0.47</td>
<td>1646.58±0.81</td>
</tr>
<tr>
<td>3. Jambu seeds</td>
<td>215.35±0.25</td>
<td>60.68±0.69</td>
<td>361.40±0.50</td>
<td>607.66±0.17</td>
</tr>
</tbody>
</table>

t-value

- Bittergourd vs fenugreek seeds: 202.62***
- Bittergourd vs jambu seeds: 115.94***
- Fenugreek seeds vs jambu seeds: 60.78***

Values are mean ±S.D. of three replicates
*** Significant of 1% level
NS Non significant
seeds. Singh et al. (1994) reported lower polyphenol content in fenugreek seeds. Saponin content of the medicinal plants varied from 214.53 (bittergourd fruit) to 1646.58 (fenugreek seeds) mg/100g on dry weight basis. Saponin content was significantly different in all medicinal plants. Higher saponin content has been reported earlier by Udayasekhara Rao and Sharma (1987) while Singh et al. (1994) reported lower saponin content in fenugreek seeds.

CONCLUSION

In addition to their hypoglycemic action, bittergourd, fenugreek seeds and jamun seeds are good source of protein, fat, minerals, crude fibre and energy. They are rich source of available carbohydrates and dietary fibre. They also contain antinutrient content which helps in controlling blood sugar. Thus, it was concluded that these hypoglycemic traditional medicinal plants provide various nutrients which are not provided by allopathic medicine and these plants have no side effects. So, the diabetic patients should be encouraged to include these medicinal plants in their daily diet to control blood sugar.

REFERENCES

