INTRODUCTION

Carbohydrates are the main energy reserves in the plant foods. Carbohydrates are of two types viz. available carbohydrate which includes starches and sugar and non available carbohydrate including crude fiber and different dietary fiber constituents. In vegetable major part of carbohydrates is present as non-available carbohydrate also known as dietary fiber and dietary fiber possess significant hypolipidemic effect when included in the diets (Aggarwal and Chauhan, 1989). Although both chayote and bottle gourd belong to the same family, yet nutritionally and physiologically these are different in nature. Bottle gourd is a widely consumed summer vegetable in India, whereas chayote is a less familiar vegetable, but this crop is gaining popularity and importance. Some information is available on the carbohydrate and mineral content of bottle gourd, but much information is not there as far as chayote is concerned. So in the present study we have made an effort to analyze and compare the available carbohydrate, dietary fiber constituents and mineral content of chayote and bottle in peeled and unpeeled samples.

MATERIAL AND METHODS

Chayote (*Sechium edule*) and bottle gourd (*Lagenaria siceraria*) were procured from the local grower of Palampur, Himachal Pradesh (H.P.) during rainy season. These were sorted and rotten vegetables were discarded. Vegetables were then washed with water and left on the table for aeration and drying. These were than divided into four lots. One lot from each vegetable was peeled and cut into small pieces. Second lot from each vegetable was kept unpeeled. Samples were then dried in electric dehydrator at 46±2°C for 36 hrs. After properly drying, samples were ground in a willy mill to pass through a 40 mesh sieve and stored in refrigerator in airtight plastic containers till further analysis were completed. Starch was estimated by method of Clegg (1956). Sugars (total sugars, reducing sugars and non-reducing sugars) were determined by methods of Lane and Eyon as described by Ranganna (1995). Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF) and Lignin were determined by method of Van Soest and Wiens (1967). Difference between ADF and lignin gave cellulose. Minerals via: potassium, copper, manganese, sodium, calcium and iron were analyzed using atomic absorption spectro-photometer. Phosphorus was determined by the method of Chen et al. The data were analyzed for analysis of variance (Sendecor and Cochran, 1966).

RESULTS AND DISCUSSION

Higher starch content was found in the with peel samples of bottle gourd as compared to similar counter part of chayote (Table 1). As is clear from the table, without peel samples of both the vegetables had higher starch content as compared to their with peel counter parts. Non-significant difference was observed in the starch content of both the vegetables. The less starch in the with peel samples can be due to the reason that peel contains more of unavailable carbohydrates whereas flesh contains more available carbohydrates. Earlier workers have reported 1.08% (Rani and Kawatra, 1990). Significantly higher total sugars were there in without peel samples of bottle gourd (8.21gm/100gm) as compared to its with peel counterpart and were also higher than without peel samples of chayote. Similar was the trend for reducing sugars. Without peel samples of both bottle and chayote contained more amount of total sugars and reducing sugars (Table 1). Non-reducing sugars were significantly higher in the with peel samples of both the vegetables when compared with each other and also with their without peel counter parts. Higher total sugars in the without peel samples can be due to the fact that flesh portion contained more sugars as compared to the peel which is rich in fiber.

Significantly (p<0.05) higher amount of reducing sugars were there in the peeled samples of both the vegetables when compared with their respective with peel counterparts (Table 1). Reducing sugars were maximum in peeled...
samples of bottle gourd, but trend was just opposite for non-reducing sugars. Higher amount of non-reducing sugars were there in the with peel samples of chayote as compared to its without peel counter part and were also higher than the with peel samples of bottle gourd. With peel samples of both the vegetables had higher amount of non-reducing sugars.

Chayote contained higher amount of crude fiber as compared to bottle gourd (Table 1). Fiber content was more in the with peel samples of both the vegetables. Significantly higher neutral detergent fiber and acid detergent fiber were found in the with peel samples of chayote as compared to its without peel counter parts reason that peel of chayote is thicker as compared to bottle gourd. Other dietary fiber constituents like hemicellulose, cellulose and lignin were significantly higher in chayote when compared with bottle gourd. Lignin content was maximum in the without peel samples of chayote (0.267gm/100gm) and minimum in the without peel samples of bottle gourd. Higher amount of starch and sugars in without peel samples of bottle gourd and chayote can be due to reason that with peel samples contained more unavailable carbohydrates i.e. fiber and dietary fiber constituents whereas flesh portion contained more of starch, and sugars. Higher crude fiber in chayote results in more of dietary fiber constituents. This can also be due to reason that peel of chayote is thicker as compared to bottle gourd.

Data in Table 2 shows the calcium, iron, phosphorus, potassium, zinc, magnesium, copper, sodium and magnesium, content of with peel and without peel samples of chayote and bottle gourd. As is clear from the dated significantly (P<0.05) higher mineral content was there in the with peel samples of chayote as compared to its without peel samples and bottle gourd, except potassium, copper, sodium and magnesium content of with peel and without peel samples of chayote and bottle gourd. Higher amount of calcium, iron phosphorus, zinc and magnesium was there in with peel samples of chayote and bottle gourd which might have been due to the reason that peel is rich in the
mineral and peeling off peel resulted in a decrease in the mineral content. About ten times more calcium is there in the chayote as compared to bottle gourd.

CONCLUSION

More sugars starch crude fiber and mineral are there in chayote as compared to bottle gourd despite the fact that both vegetables belong to same family of vegetables. Chayote is very rich in calcium as compared to bottle gourd. Further studies are needed in this regards.

ABSTRACT With peel and without peel samples of two vegetable viz. Chayote (Sechium edule) and bottle (Lagenaria siceraria) ground both belonging to the family cucarbitacae were analysed for their carbohydrate content viz. crude fiber reducing sugars, non reducing sugars and different dietary fiber constituents like, NDF, ADF, lignin cellulose and hemicelluloses and mineral’s like calcium, phosphorus and iron content and minerals. Chayote was found to be better in dietary fiber constituents, who are significantly higher when compared with bottle gourd, but total sugar, reducing sugars and non reducing sugars were significantly less in chayote.

REFERENCES

Authors’ Addresses: Madhu Modgil, Dr. Rajni Modgil, College of Home Science, CSK HPKV, Palampur 176 062, Himachal Pradesh, India
Dr. R. Kumar, Department of Veterinary Physiology, College of Veterinary and Animal Sciences, CSK HPKV, Palampur 176 062, Himachal Pradesh, India

Corresponding Author: Dr. Rajni Modgil, *Associate Professor*, College of Home Science, CSK HPKV, Palampur 176 062, Himachal Pradesh, India