GLO I Polymorphism in Two Tribal Populations of Andhra Pradesh

P. Veerraju, T. V. Rao, N. Lakshmi and Reshmi, S.

INTRODUCTION

The Glyoxalase enzyme system, transforms methyl glyoxal into lactic acid through a two-step reaction, catalysed by GLO I and GLO II (Knox, 1960). GLO I catalyses the conversion of methyl glyoxal and glutathione into S-lactoyl glutathione, whereas GLO II converts S-lactoyl-glutathione to glutathione and lactic acid. Gene for GLO I is located on short arm of chromosome number 6. Polymorphism of this enzyme was first reported by Kompf et al. (1975). In addition to the two common alleles GLO*1 and GLO*2 there are other variants like GLO*3, GLO*4, GLO*5 etc. The distribution of GLO I among the Indian populations has been reviewed by Ghosh (1977), Busi et al. (1979) and Chahal et al. (1986).

The Lambadis are also called by different names like Sugali, Brinjari, Sukali and Banjara etc. They rarely mix with other tribes. They are a class of traders, herdsmen, cattle breeders collecting fire wood and jungle produce.

The Chenchus or Chentsus are the most primitive Telugu speaking tribe. They are semiwild, innocent, inoffensive hill tribe, living on roots, honey and wild fruits.

Racially the Lambadas are Caucasoid (Aryan) in origin while the Chenchus are Australoid (Dravidian).

The sample is drawn from the Lambada and Chenchu populations residing at villages near Mannanoor of Mahabubnagar district of Andhra Pradesh.

MATERIALS AND METHODS

Blood samples were collected from 106 unrelated individuals of different age groups with reference to both sexes out of which 52 were Lambadas and 54 were Chenchus.

GLO I typing was performed as described by Pflugshaupt et al. (1978) and the zones of enzyme activity were detected by the staining technique of Parr et al. (1977).

The allele frequencies were estimated by gene counting method.

RESULTS AND DISCUSSION

About 106 samples were tested for the enzyme GLOI variation. Out of which 52 were Lambadas

Table 1: Variation of Glyoxalase I enzyme among Lambadas and Chenchus

<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>Allele frequency</th>
<th>Allele frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GLO*1</td>
<td>GLO*2</td>
</tr>
<tr>
<td>Lambda</td>
<td>52</td>
<td>0.1442</td>
<td>0.8558</td>
</tr>
<tr>
<td>Chenchu</td>
<td>54</td>
<td>0.3241</td>
<td>0.6759</td>
</tr>
</tbody>
</table>

Table 2: GLO I system among tribal groups of Andhra Pradesh

<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>Allele frequency</th>
<th>Allele frequency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda</td>
<td>52</td>
<td>0.1442</td>
<td>0.8558</td>
<td>Present study</td>
</tr>
<tr>
<td>Chenchus</td>
<td>54</td>
<td>0.3241</td>
<td>0.6759</td>
<td>Present study</td>
</tr>
<tr>
<td>Koyas</td>
<td>102</td>
<td>0.2010</td>
<td>0.7990</td>
<td>Chahal et al.,1981</td>
</tr>
<tr>
<td>Koya Doras</td>
<td>97</td>
<td>0.2061</td>
<td>0.7939</td>
<td>Veerraju et al., 19982</td>
</tr>
<tr>
<td>Konda Kommaras</td>
<td>110</td>
<td>0.1773</td>
<td>0.8227</td>
<td>Veerraju et al., 1982</td>
</tr>
<tr>
<td>Manne Doras</td>
<td>116</td>
<td>0.3060</td>
<td>0.6940</td>
<td>Ramana, 1991</td>
</tr>
<tr>
<td>Naikpods I</td>
<td>108</td>
<td>-</td>
<td>1.0000</td>
<td>Muralidhar et al.,1989</td>
</tr>
<tr>
<td>Naikpods II</td>
<td>112</td>
<td>-</td>
<td>1.0000</td>
<td>Muralidhar et al.,1989</td>
</tr>
<tr>
<td>Naikpods III</td>
<td>113</td>
<td>-</td>
<td>1.0000</td>
<td>Muralidhar et al.,1989</td>
</tr>
</tbody>
</table>
and 54 Chenchus. The results are given in table 1.

Out of 52 samples of Lambadas majority of them (37) showed 2-2 type. Interestingly the rest of them (15) showed 2-1 but not even a single case of 1-1 was detected.

Coming to Chenchus out of 54 samples, 2-1 and 2-2 are almost in equal number i.e., 24 and 25, respectively.

Both the populations are in Hardy-Wienberg equilibrium, for this system. The chi-square test for heterogeneity is found to be significant (χ² = 9.04, .02>p>.01)

Data regarding the distribution of glyoxalase I polymorphism is limited. The comparative data on tribal populations of Andhra Pradesh for GLO enzyme variants is given in table 2.

The GLO*1 allele is highest in Chenchus (32.41%) while it is lowest in Lambadas with 14.42%. In Naikpod tribes the GLO*1 allele is totally absent (Muralidhar et al., 1989).

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support extended by Department of Biotechnology (DBT), New Delhi, for part of this work.


ABSTRACT The paper presents the distribution of glyoxalase (GLO I) phenotypes and allele frequencies in Lambadas and Chenchus of Mahaboobnagar district, Andhra Pradesh.

REFERENCES


Authors' Address: P. Veerraju, T.V. Rao, N. Lakshmi and Reshmi, S., Department of Human Genetics, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, India