Role of HLA in Human Pregnancy

Jyothi V. Mallia, Dhanjit Kumar Das and Anurupa Maitra

National Institute for Research in Reproductive Health, Parel, Mumbai 400 012, Maharashtra, India

KEYWORDS: HLA, Fetal Cytotrophoblast Cells, Reproduction, Recurrent Abortion

ABSTRACT: Human leukocyte antigen (HLA) genes are the human versions of the MHC genes that are most genetically variable coding loci in mammals, found in most vertebrates. In addition to its role in the regulation of cell-cell interactions in the immune response, it also influences reproductive success. HLA-G gene is of particular interest in reproductive biology because of its specific expression on fetal cytotrophoblast cells and is also reported in protection of the human embryo. In this review, we discuss about the role of HLA in reproduction, mainly highlighting the importance of HLA-G and E in recurrent abortion.

INTRODUCTION

Human pregnancy is commonly considered as a semi-allograft as half of the fetal genome derives from the father. However, in normal pregnancy several tolerance mechanisms have been demonstrated to counteract the maternal immune response. Among these, the expression of HLA-G by invasive cytotrophoblasts has been shown to play a fundamental role in creating a tolerogenic condition at the feto-maternal interface.

HLA genes are the human versions of the MHC genes that are genetically most variable coding loci in mammals, found in most vertebrates and encoded by a series of genes (~130) located on the short arm of chromosome 6 that are responsible for lymphocyte recognition, “antigen presentation” and immune response regulation. They are classified into three classes viz. Class I, Class II and Class III (Ober 1998). Class I consists of minor classes HLA E and G which are reported to be relevant to recurrent spontaneous abortion Pfeiffer et al. (2001). Studies in some outbred, and in closely related, human populations indicate that HLA or HLA-linked genes and HLA regulatory factors affect gamete development, embryo cleavage, blastocyst and trophoblast formation, implantation, fetal development and survival (Choudhury and Knapp 2001). In this review, we examine the published data that deals with role of HLA in reproduction giving special reference to HLA G and E.

HLA play critical roles during different stages of pregnancy. HLA locus is a high gene density locus with a high frequency of gene rearrangements resulting in the formation of null alleles producing variant antigens or no antigen. HLA antigens play a major role in transplantation and are critical in pregnancy from gamete formation to completion of development. Class-I antigens express on the invasive trophoblast and play a role at the maternal-fetal interface (Hviid 2006). HLA sharing (DQ alpha) between the embryo recipient (female partner) and the sperm provider (male partner) inevitably leads to implantation dysfunction and reproductive loss. This fetal loss results from homozygosity of recessive lethal or deleterious alleles in gametic disequilibrium with HLA antigens (Shankar-kumar et al. 2008). Mainly because when DQ alpha and/or HLA sharing exists between a female and male it will usually require repeated embryo exposures for the host’s uterine natural killer cells to become sufficiently activated to cause damage to the embryo’s root system (trophoblast). Once natural killer cells become activated, they begin to over-produce substances known as TH-1 cytokines which attack the trophoblast and so damage it that the embryo is promptly rejected (Moghbraby et al. 2010). The results of studies in different populations have revealed significant association of different HLA alleles in each population. For example, studies by Pfeiffer et al. (2001) suggest an increased frequency of HLA-G *01013 and HLA-G *0105N carriers in the recurrent spontaneous abortion (RSA) group compared to controls while a study by Aldrich et al. (2001) suggests...
increased frequencies of the alleles HLA-G *0104 or *0105N in RSA group. Another study reveals that RSA patients carry HLA-G *0106 allele which exhibits a 14 bp deletion in exon 8. In a case control study using the RFLP, the frequencies of the HLA-DRB1*01 and HLA-DR*03 allogenotypes were significantly increased among the patients with at least four previous miscarriages (Kruse et al. 2004). According to them Complement component C4 gene polymorphisms also are found to be associated with RSA. C4A null alleles increased in the primary abortions group wives and husbands compared to the controls and C4B null alleles show an increase in the secondary abortion wives and husbands compared to the controls. Moreover, to the best of our knowledge, only few studies have been conducted in India to reveal the association of HLA alleles with RSA (Table1).

Table 1: Studies reported in Indian population to know the relation between HLA and RSA

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Reference</th>
<th>Study</th>
<th>Pts</th>
<th>Ctl</th>
<th>Association</th>
<th>Allele associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shankarkumar et al. 2008</td>
<td>Case Control</td>
<td>81 RSA couple</td>
<td>97 control couple</td>
<td>Yes</td>
<td>HLA-A030101,B5701, CW120201,DRB1030101</td>
</tr>
<tr>
<td>2</td>
<td>Aruna et al. 2011</td>
<td>Case control</td>
<td>143 RSA couple</td>
<td>150 control</td>
<td>Yes</td>
<td>HLA-DRB1</td>
</tr>
<tr>
<td>3</td>
<td>Abbas et al. 2004</td>
<td>Case control</td>
<td>120 RSA women</td>
<td>120 fertile women</td>
<td>Yes</td>
<td>HLA-G*010103</td>
</tr>
<tr>
<td>4</td>
<td>Suryanarayana et al. 2008</td>
<td>Case control</td>
<td>169 RSA couple</td>
<td>92 control</td>
<td>Yes</td>
<td>HLA G 3’UTR</td>
</tr>
<tr>
<td>5</td>
<td>Tripathi et al. 2006</td>
<td>Case control</td>
<td>120 RSA women</td>
<td>120 fertile women</td>
<td>Yes</td>
<td>14/+14 bp HLA-G genotype of female associated</td>
</tr>
<tr>
<td>6</td>
<td>Aruna et al. 2010</td>
<td>Case control</td>
<td>143 RSA couple</td>
<td>150 control</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

HLA-G and HLA-E

HLA-G transcripts are present in quite significant amounts in first-trimester placental tissue, particularly in the extravillous membranes, while the opposite occurs at term. This kind of expression is consistent with the theory that HLA-G might play a role in fetal protection. This could be consequent to either non-immune (structural) or immune functions at the maternal–fetal interface. Current evidence suggests an immune function wherein HLA-G protects fetal cells from maternal uterine natural killer (NK) cells, which are found in large numbers within cells invading the trophoblasts. T helper (Th) cells of the immune system recognize antigens presented on HLA class II proteins. Thus, HLA-G is believed to be an important factor in pregnancy complications such as RSA and pre-eclampsia (Hara et al. 1996; Goldman et al. 2000; Obrien et al. 2001; Yie et al. 2004). According to Chaouat et al. (2004), HLA-G might be a key protein in the shift of the proinflammatory Th1 response to Th2, which is essential for a successful pregnancy. In addition, methylation of HLA-G and expression of sHLA-G may also be implicated in RSA (Ober et al. 2003). Low concentrations of HLA-G are found in patients with pre-eclampsia which indicates that an adequate level of HLA-G expressed by extravillous trophoblast cells is important during pregnancy (Colbern et al. 1994; Lim et al. 1997). Moreauv et al. (2008) reported the risk of developing RSA is higher among women being homozygous for the HLA-G14 bp insertion polymorphism in comparison to women who are heterozygous because the plasma concentration of sHLA-G is also lower among the +14 bp homozygous women in comparison with women with the two other 14 bp HLA-G genotypes (Hviid et al. 2004a; Hviid et al. 2004b). Some studies suggest that HLA-G alleles, including the 14-bp sequence in the 3’UTR, might be associated with certain complications of pregnancy, such as pre-eclampsia and recurrent spontaneous abortions (RSA). On the other hand, a range of studies does not support this (Hiby et al.1999). However, the previously discussed studies of associations between the HLA-G genotype and HLA-G expression levels and studies of significant associations of low sHLA-G levels and risk of pre-eclampsia or spontaneous abortion (Ishitani et al. 2003; Morales et al. 2003) might also indicate an association between HLA-G genetics and these complications of pregnancy. In a study of SNPs in the 5’ URR of the HLA-G gene in a cohort of Hutterite couples, Ober et al. (2003) observed an increased risk of abortion in couples where both members carried the _725G allele described above (Allan et al. 1999). HLA-G has been shown to bind to the immunoglobulin-like transcript (ILT)-2 and
killer inhibitory receptor (KIR)2DL4 which are inhibitory receptors on NK cells and may confer protection to Extra Villous Trophoblasts (EVTs) via these receptors (Lee et al. 1998; Biassoni et al. 1999). The reduction of HLA-G molecules could deregulate uterine natural killer (uNK) cells which are supposed to participate in the process of placentation and in uterine spiral artery transformation. Soluble HLA-G may contribute to trigger functional maturation of the uNK cells and vascular remodeling and de-cidualization. The reduced release of sHLA-G into the maternal circulation in preeclampsia and IUGR may alter the maternal-fetal immune relationship and thus be involved in the cause of these disorders. However, in order to fully determine the function of HLA-G, more research is required.

Another important component of the immunological network at fetomaternal interface is HLA-E. HLA-E are believed to help the fetus to avoid maternal immune surveillance, possibly by interacting with the CD94/NKG2A NK-cell inhibitory receptor (Biassoni et al. 1999). Compared to HLA-G, HLA-E expression is not only confined to fetomaternal interface but has wider tissue distribution including T cells, B cells, activated T lymphocytes and various other cells (Houlihan et al. 1995). HLA-E antigens are identified as ligands of a subset of immunoglobulin superfamily of NK cell receptors and their interaction with KIR of NK cells may be responsible for inhibition of killer activities of NK cells (Vales-Gomez et al. 1999). HLA-E specifically interacts with CD94/NKG2A that leads to the recruitment of the phosphatase SHP-1 to phosphorylated tyrosine of NKG2A and results in the inhibition of NK cells (Carretero et al. 1997). This immunomodulating activity of HLA-E may be helpful in the success of pregnancy, as >90% of CD56+ lymphocytes of decidua are constituted by CD94/NKG2+ NK cells (Gudelj et al. 1996).

This immunoregulatory activity suggests a possible role of HLA-E molecules in protection of fetus from maternal immune response in normal pregnancy. In addition, as HLA-E is expressed on fetomaternal interface that normally expresses only HLA-G, it can be expected to perform unique immunomodulating activities in the placenta. Two non-synonymous alleles of HLA-E are present in human population (Geraghty et al. 1992; Matte et al. 2000) maintained through strong balancing selection (Grimsley and Ober 1997) distinguished by a single sequence dimorphism at position 107, arginine (E*0101; HLA-E –R) or glycine (E*0103; HLA-E.G). The suppressive effect of HLA-G and HLA-E on the secretion of TNF-alpha (Th1 cytokine), IL-10 (Th2 cytokine) and IL-8 (chemokine) by immature dendritic cells could be interpreted as further evidence for the central immunotolerance role of HLA-G and HLA-E during early pregnancy (Steck et al. 2002).

CONCLUSION

To summarize, the HLA genes are the main genetic determinants of the repertoire of possible immune responses of an individual. Apart from this, they have significant role in reproduction.

REFERENCES

Colbern GT, Chiang MHL, Main EK 1994. Expression of the nonclassic histocompatibility antigen HLA-G by

