Heterochromatic Variations and Pregnancy Losses in Humans

*Hemlata Purandare, **Nandini Vaz Fernandes, *Sanjay Vasantrao Deshmukh and *Sandesh Chavan

*Centre For Genetic Health Care, Elco Arcade Bandra (W) Mumbai, Maharashtra, India
E-mail: hema.purandarey@gmail.com / sandesh.lc@gmail.com

** Department of Zoology, Smt. Parvatibai Chowgule College of Arts and Science, Gogol Margao Goa, India
Email: nvf001@chowgules.ac.in / nandini_chgrl@yahoo.com

#Department of life Sciences, University of Mumbai, Vidyannagari, Santacruz (E), Mumbai 400 098, Maharashtra, India
Email: docsud@yahoo.com

KEYWORDS Heteromorphic Variations. Miscarriages. Karyotype

ABSTRACT A total of 440 couples (880 individuals) with history of repeated abortions were evaluated for heterochromatic variations. The present study was undertaken with the objective of investigating the role of heteromorphic variations in pregnancy losses and reproductive failures in the human population. Peripheral blood samples of the couples were cultured and processed to obtain metaphase plates. The GTG banded slides were analysed using automated karyotyping system (Cytovision) for precise analysis of the karyotype. The study revealed that the frequency of chromosomal anomalies and variations leading to Bad Obstetric History (BOH) was 17%. Chromosomal rearrangements constituted 24% of the cases while heterochromatic variations constituted 76% of the chromosomal cause for BOH. The heterochromatic variations associated with BOH included inversions and deletions. Our study revealed a correlation between BOH and heterochromatic variations of Chromosome 1 and 9.

I. INTRODUCTION

Cytogenetic studies have an important role in the evaluation of couples with repeated miscarriages and BOH. Cytogenetic studies are essential for evaluating the chromosomal abnormalities and heterochromatic variants in such couples. Contradiction exists as to the consequences of the heterochromatic variations seen in the general population with respect to its inheritance. Some studies have reported that variations in heterochromatic regions might have deleterious effects (Bhasin 1973; Halbrecht et al. 1976; Kimberling et al. 1977; Lubs et al. 1977; Saby et al. 1977; Bhasin 2005). Studies by Madon et al. (2005), Sahin et al. (2008), Minocherhomji et al. (2009) showed that heteromorphisms shown by paracentric long-arm regions of chromosomes 1, 9 and 16, and inv(9) were associated with infertility. Studies by Minocherhomji et al. (2009) suggest that the increase in the long arm of the Y chromosome may affect reproductive capacity. Some studies have shown that such variations are normal and carry no implications for abnormality in the person who has such variations (Hemming and Burns 1979). Heterochromatic variations appear to have no adverse affects on outcome of in vitro fertilization and embryo transfer treatment (Y Hong 2010). Because of the need for more data on the knowledge of the recurrence risks involved in case of heterochromatic variations, the present study was undertaken with the objective of investigating the role of heteromorphic variations and chromosomal anomalies on spontaneous abortions and reproductive failures in the humans.

II. METHODOLOGY

A total of 440 couples from heterogeneous population within the age group of 20 to 45 with BOH were evaluated in the study. The cases were recruited from the patient group referred by clinicians with a history of two or more pregnancy losses in the form of totally empty gestational sac, disorganized embryo, growth retarded fetus or still birth. In all the cases other causes of BOH were ruled out. The standard history of the patients was noted in a predesigned format to study
the inheritance pattern. All necessary information of the couple, their offspring and parents was noted down. The couple with BOH was subjected to chromosomal analysis from peripheral blood. Those without BOH served as control group. Control group consisted of fertile individuals with children. Primary infertility patients were not included in the control group.

The cells were cultured in RPMI culture media for 72 hours. The culture was then processed using standard protocol of leukocyte culture (Verma and Babu 1989). After processing of the culture, metaphase plates were prepared and subjected to GTG Banding technique for analysis of the chromosome variability. The chromosomes were analysed at a band resolution of 450-550. From each patient 20 metaphase plates were analysed for heterochromatic variations using automated karyotyping software (Cytovision 3.6) at 1000X magnification. The data was analysed statistically using Chi-Square test. Whenever necessary, the results were compared by two-tailed Fisher’s exact test, calculated online at http://www.graphpad.com/quickcalcs/contingency1.cfm.

III. RESULTS

Cytogenetic evaluation of 440 couples (880 individuals) with BOH revealed chromosomal anomalies and variations in 75 cases. In our control group of 200 individuals, chromosomal variations were observed in 7 individuals (3.5%). Thus, the frequency of chromosomal anomalies and variations leading to BOH was 17% which was significantly higher ($P=0.0005$) as compared to the control. Of these 75 cases, 18 chromosomal rearrangements were observed constituting 24% of the total chromosomal anomalies and variations. Heterochromatic variations were observed in 57/75 cases, constituting 76% of the chromosomal anomalies and variations. Frequency of these heterochromatic variations are depicted in Figure 1.

The heterochromatic variations associated with BOH included inversions, $qh+$, $ps+$ and deletions. The most frequent of these were the $qh+$ (40.35%) followed by $ps+$ which constituted 31.58%. The inversions and deletions constituted 24.56% and 3.51% respectively. Various types of heterochromatic variations are depicted in Figure 2. Rate of occurrence of the heterochromatic variations as compared to the control is depicted in Figure 3. The photographs of various heterochromatic variations are depicted in Plate 1.
HETEROCHROMATIC VARIATIONS

1) Inversions

- Inv(3)
- Inv(9)
- Inv(Y)
- TOTAL inversions

2) Variations of ‘q’ Heterochromatin (qh+):

- 1qh+
- 9qh+
- 16qh+
- TOTAL (qh+)

3) Presence of Satellite on Short Arm ‘P’ (ps+)

- 13ps+
- 14ps+
- 15ps+
- 22ps+
- TOTAL (ps+)

4) Deletion

- Del(Y)

<table>
<thead>
<tr>
<th>Type of heterochromatic variation</th>
<th>Chromosome with heterochromatic variation</th>
<th>No. of cases</th>
<th>Frequency of occurrence in BOH group (%)</th>
<th>Frequency of 1st trimester pregnancy losses (%)</th>
<th>Frequency of 2nd trimester pregnancy losses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Inversions</td>
<td>Inv(3)</td>
<td>01</td>
<td>1.75</td>
<td>88.9 *</td>
<td>11.10</td>
</tr>
<tr>
<td>2) Variations of ‘q’ Heterochromatin (qh+)</td>
<td>Inv(9)</td>
<td>09</td>
<td>15.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv(Y)</td>
<td>04</td>
<td>07.02</td>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>3) Presence of Satellite on Short Arm ‘P’ (ps+)</td>
<td>TOTAL inversions</td>
<td>14</td>
<td>24.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Deletion</td>
<td>1qh+</td>
<td>10</td>
<td>17.54</td>
<td>80*</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>9qh+</td>
<td>09</td>
<td>15.79</td>
<td>55.6**</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>16qh+</td>
<td>04</td>
<td>07.02</td>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>TOTAL (qh+)</td>
<td>23</td>
<td>40.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Presence of Satellite on Short Arm ‘P’ (ps+)</td>
<td>13ps+</td>
<td>02</td>
<td>3.51</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>14ps+</td>
<td>01</td>
<td>1.75</td>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>15ps+</td>
<td>07</td>
<td>12.28</td>
<td>42.68***</td>
<td>28.58</td>
</tr>
<tr>
<td></td>
<td>22ps+</td>
<td>08</td>
<td>14.04</td>
<td>62.5</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>TOTAL (ps+)</td>
<td>18</td>
<td>31.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Deletion</td>
<td>Del(Y)</td>
<td>02</td>
<td>3.51</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Fisher’s exact test: * P= 0.0001, ** P=0.4788, *** P=0.395, * P= 0.0001.

1) Variations of ‘q’ Heterochromatin (qh+):

The qh+ constitute 40.35% of the heterochromatic variations. The most frequently affected chromosome with qh+ was chromosome 1 (17.54%), followed by 9qh+ (15.79%) and 16qh+ (7.02%) (Table 1).

1qh+: Amongst the BOH couples, 1qh+ was
Fig. 5. Showing the heterochromatic variations in couples with BOH

<table>
<thead>
<tr>
<th>Inversion: Chromosome 3, 9 and ‘Y’</th>
<th>Presence of satellites: ps+ of 13, 14, 15 and 22</th>
<th>Variations of ‘q’ heterochromatin: qh+ of chromosome 9, 1, 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>inv(3)(p21;q24)</td>
<td>13ps+</td>
<td>1qh+</td>
</tr>
<tr>
<td>inv(Y)</td>
<td>14ps+</td>
<td></td>
</tr>
<tr>
<td>inv(Y)</td>
<td>15ps+</td>
<td></td>
</tr>
<tr>
<td>Del Y (q1)</td>
<td>22ps+</td>
<td></td>
</tr>
<tr>
<td>Del Y (q1)</td>
<td>22ps+</td>
<td></td>
</tr>
<tr>
<td>Deletion ‘Y’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
significantly higher ($P=0.0059$) in the males (70%) as compared to the females (30%). BOH observed in those was first trimester pregnancy losses was significantly higher ($P=0.0001$) at 80% while that in second trimester was 20%, with congenital defects.

9qh+: Presence of 9qh + was significantly higher ($P=0.0001$) in the males (77.8%) as compared to the females (22.2%). BOH observed in those was first trimester pregnancy losses was significantly higher ($P=0.0001$) at 80% while that in second trimester was 20%, with congenital defects.

16qh+: Heterochromatic region of 16qh+ was significantly higher ($P=0.0001$) in the females (75%) as compared to the males (25%). BOH observed in all these cases was first trimester pregnancy losses (100%) (Fig. 4 see Fig. 5).

2) Presence of Satellite on Short Arm ‘p’ (ps+):

The ps+ constitute 31.58% of the heterochromatic variations. The most frequently affected chromosome with ps+ was chromosome 22 (14.04%), followed by 15ps+ (12.28%). Ps+ of chromosome 13 and 14 constituted 3.51% and 1.75% of the heterochromatic variations respectively (Table 1).

22ps+: Presence of 22ps+ was higher in the females (62.5%) as compared to the males (37.5%). The difference was statistically insignificant ($P=0.1169$). The BOH observed in those with first trimester pregnancy losses is 62.5% while that in second or third trimester was 37.5% (Fig. 4 see Fig. 5).

15ps+: Presence of ps+ on chromosome 15 in BOH cases was higher in the males (57.1%) as compared to the females (42.9%). The difference was not significant ($P=0.3950$). The BOH observed in those with first trimester pregnancy losses was 42.68% while that in second or third trimester was 28.58% (not statistically significant, $P=0.395$). In two cases there was ectopic pregnancy (28.5%).

13ps+ and 14ps+: Amongst the acrocentric group 13ps+ and 14ps+ constituted 3.51% and 1.75% of the total heterochromatic variations respectively. Both the patients having 13ps+ had history of two missed abortion while the one with 14ps+ had an ectopic pregnancy and one had a normal child.

3) Inversions:

The inversions constitute 24.56% of the heterochromatic variations. The most frequently affected chromosome with inv was chromosome 9(15.79%), followed by inv(Y) (7.02%) and inv (3) (1.75%) of the heterochromatic variations (Table 1).

Inv(9): Amongst the BOH couples, frequency of inv(9) was significantly higher (15.79%, $p<0.05$) as compared to the control group (1.26%). Inv(9) was significantly higher ($P=0.0214$) in males (66.6%) as compared to females (33.3%). The BOH observed in those with first trimester pregnancy losses was significantly higher ($P=0.0001$) at 88.9% while that in second or third trimester was 11.1% (Fig. 4 see Fig. 5).

Inv(Y): The BOH observed in those with first trimester pregnancy losses was 100%. The frequency of heterochromatic variations associated with BOH are depicted in Table 1.

IV. DISCUSSION

Chromosome abnormalities are responsible for at least half of spontaneous abortions or miscarriages and are an important cause of congenital malformations (Hook 1992; Tolmie 1995; Rimoni 2002; Bhasin 2005; Korteweg 2008). Several early studies suggested that the variation in size of heterochromatic regions on human chromosome might have deleterious effect (Halbrecht and Shabtay 1976; Lubs et al. 1977b; Lubs et al. 1977a; Say et al.1977; Bhasin 2005; Madon et al. 2005; Sahin et al. 2008). The length heterochromatin of 1, 9, 16 and Y and its role in reproductive wastage was examined by Rodrigues et al. (1987) in 100 couples with recurrent miscarriages. Thorough review of the heterochromatic variations in the human population and its scoring criteria is done in the studies by Bhasin (2005), wherein he stressed the importance of studying its clinical significance.

The present research finding reveals that carriers of heterochromatic variations are at higher risk of having BOH. The heterochromatic variations associated with BOH included inversions, qh+, ps+ and deletions. The chromosomal polymorphism of short arms of acrocentric chromosomes and heterochromatin variations of chromosomes 1, 9, 16 and Y also have been reported in humans by Podugolnikova et al. (1982). Ac-
cording to the present study, the most frequently affected chromosome was chromosome 1 and 9 as compared to the control group. Some workers have considered variations in heterochromatin in chromosomes 1 and 9 to be associated with fetal wastage, recurrent abortions, and abnormal phenotypes. But studies of (Hemming 1987) indicated no significant difference in the heterochromatic regions between aborting and non-aborting couples. Studies of Podogol'nikova et al. (1982) also revealed that heterochromatic regions of chromosomes 1, 9, 16 and Y in children showed signs of embryonic development disorder. Heterochromatin has a specific role and behaviour in the synopsis of human homologous chromosomes. Association of heterochromatic variation with BOH is also indicated in the studies of Maes (1983), Yuce (2007), Minocherhomji (2009).

The pericentric inversion of chromosome 9 or inv(9) is commonly seen in normal humans and the frequency estimated to be 1 to 3% in general population (Nielsen et al. 1975; Ko 1992; Teo 1995; Thomas 1999). Our present study revealed a frequency of 1.26% of inv(9) in humans with normal offspring (control group). But the frequency of inv(9) associated with BOH was significantly higher (15.79%) as compared to the control group.

According to the present study, the most frequently affected chromosome was chromosome 1 and 9 as compared to the control group. Some workers have considered variations in heterochromatin in chromosomes 1 and 9 to be associated with fetal wastage, recurrent abortions, and abnormal phenotypes. But studies of (Hemming 1987) indicated no significant difference in the heterochromatic regions between aborting and non-aborting couples. Studies of Podogol'nikova et al. (1982) also revealed that heterochromatic regions of chromosomes 1, 9, 16 and Y in children showed signs of embryonic development disorder. Heterochromatin has a specific role and behaviour in the synopsis of human homologous chromosomes. Association of heterochromatic variation with BOH is also indicated in the studies of Maes (1983), Yuce (2007), Minocherhomji (2009).

The pericentric inversion of chromosome 9 or inv(9) is commonly seen in normal humans and the frequency estimated to be 1 to 3% in general population (Nielsen et al. 1975; Ko 1992; Teo 1995; Thomas 1999). Our present study revealed a frequency of 1.26% of inv(9) in humans with normal offspring (control group). But the frequency of inv(9) associated with BOH was significantly higher (15.79%) as compared to the control group.

Among the non-acrocentric human chromosomes, chromosome 9 represents highest degree of morphological variations. The mechanisms of origin of inversions 9 are highly complex (Verma 1988). Our studies revealed that chromosome 9 showed the maximum variations which included qh+ (15.79%) and inv(9) (15.79%). These individual with chromosome 9 abnormalities had high frequency of first trimester abortions. Inv(9) showed a frequency of 88.9% of first trimester while 9qh+ has a frequency of 55.6%. Studies of Tsvetkova (1979) also showed that individuals with reproductive failure were carriers of variants of chromosomes 9. In the present study, heterochromatic variations of chromosome 9 were significantly more frequent as compared to the control individuals. Inv(9) reported to be associated with BOH, infertility and congenital anomalies even in the studies of Thomas (1999), Davolos (2000), Madon et al. (2005), Nagvenkar (2005), Sahin et al. (2005). A high frequency of inv(9)(p12q13) was detected in children with dysmorphic features (Rao 2006).

This indicates that the inv(9) has a role in the abnormal phenotype development. During inversion event there might be loss or suppression of euchromatin chromosome region and hence detailed chromosomal break point study is important to understand the clinical significance of the pericentric inversion of chromosome 9. Apart from showing a high incidence of gaps and splits at pachytene stage in synaptonemal complex preparations, chromosome 9 has been described as being especially prone to breaks that produce asymmetric bivalents in meiotic metaphase spreads (Sarrate et al. 2004) and structural chromosome aberrations in sperm studies (Brandriff et al. 1988; Estop et al. 1995; Templado et al. 2005). The incidences of gaps and splits differed among all of these secondary heterochromatic regions, suggesting a different timing of synopsis for each region. A possible explanation for these differences in timing among heterochromatin regions could be variations in size, in composition and in molecular organization of the heterochromatic region (Tagarro et al. 1994; Strachan and Read 1999).

In the study of Rao et al. (2006), a high frequency of inv(9) was detected in children with dysmorphic features and developmental delay and about 70% were de novo origin. The correlation of inv(9) with clinical features of children with dysmorphic features revealed that most of the children had facial dysmorphism, abnormal phenotype and delayed milestones. This suggests that the unbalanced inversions at different break point regions might also have a role in the abnormal phenotype development.

The other most frequently affected chromosome in the present study was chromosome 1 (17.54%). Variations in the size of band 1q12 of chromosome 1 were earlier noted to occur in 1/100 to 1/1000 newborns (ubs et al. 1977). An elongated 1qh region referred to the “uncoiler” was used as a familial marker in the first successful effort to map an autosomal gene, the Duffy blood group, to chromosome 1 (Donahue et al. 1968; Ying et al. 1968). Heterogeneity is evident in 1qh heterochromatin not only by C-banding but also by Giemsa-11 staining, and by lateral asymmetry (Magenis et al. 1978). C-bands of chromosome 1 have been reported to be more variable in patients with malignant disease compared to normal controls (Atkin et al. 1977 and Tesouz et al. 1993). Rearrangements in the vicinity of the centromere are overrepresented in many types of human cancer (Verma et al. 1988) in-
HETEROCHROMATIC VARIATIONS

including the characteristic rosette formation in a rare disease called ICF (immune deficiency, centromeric instability and facial anomalies).

Buretic-Tomljanovich et al. (1997) studied couples with two or more miscarriages, couples with a stillborn child and couple with no history of miscarriages and at least two normal children. Results showed an increase in heterochromatin of chromosome 16 in couples with a stillborn or malformed child. The frequency of chromosome 16 abnormality in the present study was 7.02%. The frequency of first trimester abortions in an invasive procedure is suggested. Cases where heteromorphism is observed in the fetus similar to parent the couple is comforted that chance of the fetus being normal are high.

V. CONCLUSION

Heterochromatin variations especially of chromosome 1 and 9 (inversions and qh+) are significantly higher in couples having BOH. Pregnancy losses were also significantly high in couples with 22ps+ and 15ps+. Therefore our studies suggest significantly higher incidence of pregnancy losses in those who are carriers of heteromorphic variations of chromosome 1, 9, 15 and 22. We consider this significant for offering genetic counseling in couples with BOH.

VI. RECOMMENDATIONS

Since heterochromatic variations are associated with BOH, the couple should be counseled for genetic counseling in couples with BOH.

REFERENCES

HETEROCHROMATIC VARIATIONS

