Apolipoprotein C3 (SstI) Gene Variability in Northwest India: A Global Perspective

Puneetpal Singh¹, Monica Singh¹, D.P. Bhatnagar¹, Taranpal Kaur² and Sarabjit Mastana³

1. Molecular Genetics Laboratory, Department of Human Biology, Punjabi University, Patiala, India
2. City Medsave Hospital, Ferozepur, India
3. Human Genetics Laboratory, Department of Human Sciences, Loughborough University, Loughborough, UK

KEYWORDS Protein; ethnic groups; polymorphism; heart disease; medical genetics

ABSTRACT Apolipoprotein C3 plays an important role in the receptor mediated hydrolysis of triglyceride rich lipoproteins (TRLs) by inhibition of lipoprotein lipase (LPL), delayed clearance of which causes hypertriglyceridemia (HTG). Indians are considered to be more vulnerable to the adverse effects of hypertriglyceridemia and consequently its probable sequel of cardiovascular disorders. Several studies have revealed the association of rare allele (S2) of APOC3 (SstI) polymorphism with dyslipidemias and coronary artery diseases. In order to investigate the role and relevance of this polymorphism in Northwest India, the present study aimed to investigate the genetic variation of 3' untranslated region of APOC3 (SstI) in 312 individuals belonging to four endogamous groups (Banias, Brahmins, Jatsikhs and Khatris) of Punjab. Uncommon *S2 allele frequency was 22.6%, 22.5%, 22.7% and 26.2% in Banias, Brahmins, Jatsikhs and Khatris respectively. Higher heterozygosity of 0.39 in Khatris reflected their greater variation at this locus than the other populations. Chi-square analysis did not reveal any significant differences between these populations and other studies from North India (P > 0.05). Comparative analysis of 66 other populations across the world revealed large heterogeneity at this locus whereby, Mongoloid populations have the highest frequencies of *S2 allele (0.19 to 0.48) followed by Indians (0.18 to 0.29), Africans (0.04 to 0.27) and Caucasian populations (0.01 to 0.12). Genetic distance and multivariate analyses showed that Indian population is quite distinct from other Caucasian and Oriental populations. Clinal heterogeneity of predisposing *S2 allele in Asia showed an increasing cline (y = 0.0043x + 0.1209, R² = 0.1162) towards North. As this allele is associated with HTG and other cardiovascular complications, differential variation in different populations may have insightful implications for association and medical genetic studies.

INTRODUCTION

APOC3 (protein: apoC-III; gene: APOC3) is a constituent of very low density lipoproteins (VLDL), chylomicron remnants and high density lipoprotein (HDL) particles (Mahley et al. 1984). It helps in the hepatic uptake of triglyceride (TG) rich lipoproteins (TRLs) and their remnants. Molecular perturbations of APOC3 gene hampers the function of receptor mediated hydrolysis of circulating TRLs which augments the development of hypertriglyceridemia (Zeng et al. 1995), myocardial ischemia (Ginsberg et al. 1995) and carotid artery atherosclerosis (Sharrett et al. 1995).

The APOC3 gene, flanked by APOA1 and APOA4 genes in a 15kb cluster, is localized on 11q23.3 (Bruns et al. 1984). The cytosine (C, *S1 allele) to guanosine (G, *S2 allele) substitution in 3'-untranslated region (3' UTR) of exon 4 in the APOC3 gene gives rise to an SstI restriction site (Karathanasis 1985) which has been studied extensively in relation to various lipid disorders. The frequency of *S2 allele varies greatly among populations of the world ranging from 0% in Europeans (Stocks et al. 1987) to 39% in Japanese (Paul et al. 1987). The significant association of this allele with coronary heart disease (CHD) and diabetes (Rigoli et al. 1995) is partly attributed to the elevated triglycerides, plasma cholesterol, HDL and APOC3 levels (Rigoli et al. 1995; Ordovas et al. 1991) with some conflicting reports (Paul-Hayase et al. 1992; Tybjaerg-Hansen et al. 1993). As lipid levels are strongly related to cardiovascular disease risk (La Rosa et al.1990), it has been proposed that variation in the population frequency of *S2 allele may genetically modulate lipids and lipoproteins differently in various populations and hence, conferring different disease risks.
A large amount of data has been generated globally but, studies documenting the APOC3 gene variability in Indian population are scarce. Therefore, the present study was carried out to enlarge our knowledge about the functional consequences of APOC3 polymorphism in four ethnic groups belonging to different social strata of Punjab, a Northwest state of India. In addition, we have carried out the global evaluation of these allele frequencies across 66 populations of the world and explored some plausible reasons of its wide differential disparity. These allelic dissimilarities may have insightful implications in disease association and medical genetic studies.

MATERIALS AND METHODS

Study Subjects: The present study comprised of total 312 (228 males, 84 females) unrelated and apparently normal individuals ranging in age from 20 to 65 years (mean age ± SEM, 44.46 ± 1.28). The participants belonged to one of the four main ethnic groups, Banias (n = 73), Brahmins (n = 69), JatSikhs (n = 88) and Khatri (n = 82) from various places of Punjab representing social hierarchy and spoke both Punjabi and Hindi languages.

Ethnic Profiles of the Study Population: The people of Punjab are considered as the progeny of a mixture of many proto and post harappan invaders who entered this land from west and became original settlers of this area (Rose 1970). Banias in Punjab belong to Vaishya Varna of Indian caste system and mainly a mercantile community. Brahmins of Punjab are primarily Saraswat Brahmins and their vocation is teaching, performing priestly chores along with trade and industry. Khatri, a variant of the Sanskrit word Kashtrya were nomadic invaders who came and expanded into Central Asia and Europe, creating the similarities in Indo-European languages. The JatSikhs are the main agricultural community distributed all over Punjab. They are thought to be the progeny of Indo-Scythian / Indo-European / Indo-Aryan stocks. All these castes practise endogamy at the caste level and exogamy at gotra level. However, in the changing socio-economic circumstances, the rigidity in not having matrimonial alliances with the other castes is diluted.

APOC3 Genotyping: Blood was drawn from an antecubital vein into tubes containing disodium ethylenediamine tetra acetate (EDTA) to a final concentration of 1.5 mg/ml. DNA was extracted from whole blood following standard phenol chloroform method. For Ssr1 polymorphic site, 596 bp fragment of APOC3/3’ UTR was amplified using forward primer; 5’-CAT GGT TGCC CTA CAG GAG TTC-3’ and reverse primer; 5’-TGT CGAAAC ACG CCT TCC AGT-3’. The PCR amplification was carried out in a final reaction volume of 25µl containing ~100ng of genomic DNA, 0.4mM primers (Bangalore Genei, India), Genei PCR master mix (containing 0.2mM each of dATP, dCTP, dGTP, and dTTP, 1.25 units Taq DNA polymerase, 2.5mM MgCl2). After the initial denaturation at 95°C for 5 minutes, 35 PCR cycles were carried out as 95°C = 1 minute, 58°C =45 seconds, 72°C =1 minute with the final extension at 72°C for 7 minutes. The PCR products were digested with 10 units of Ssr1 (New England Biolabs Inc., USA) in the presence of 1 µl of 10X buffer provided with the restriction enzyme for 3 hours. The restricted products were electro-phoresed on a 3% agarose gel prepared with TBE buffer and 0.5mg/ml of ethidium bromide and visualized in a UV inspection unit. Internal validation of these polymorphisms was done by reanalysing some samples to avoid bias in genotyping error.

Statistical Analyses: Allele frequencies were estimated by gene counting method. The departure from Hardy-Weinberg equilibrium (D_A) along with the statistical significance of RFLP was calculated according to the formulae

$$D_A = P_{2} \times \frac{p_2^2}{2} \times \frac{q_1^2}{2}$$

$$\chi^2 (D_A) = n \times D_A^2 / (p_1^2 \times p_2^2)$$

given by Haviland et al. (1991), where P denotes genotype frequency; p denotes relative allele frequency; 1 and 2 denote the frequent and rare allele respectively; n is the number of subjects studied. Average heterozygosities were calculated by gene identities. Gene diversity analysis of H_t, H_s and G_{ST} statistics were calculated following Nei’s (Nei et al. 1983) method. DA genetic distance (Nei et al. 1983) was calculated and the multidimensional distance matrix was reduced into UPGMA and Neighbor joining dendograms. Correspondence analysis was carried out using NTSYSpc programme.

RESULTS

The distribution of APOC3 genotypes, estimated allele frequencies, heterozygosities (H) and their departure from Hardy Weinberg equilibrium (D_A) is summarized in table 1. Allele frequencies of *S1 and *S2 in all the studied
populations showed trivial variations except Khatris where *S1 and *S2 showed slightly higher dissimilarity than Banias, Brahmins and JatSikhs. All the populations were in Hardy Weinberg equilibrium and did not show any significant variation (P > 0.05). Khatris showed higher heterozygosity (39%) than other ethnic groups which reflected their higher heterogeneity and more gene flow than Banias, Brahmins and JatSikhs. However, the mean estimated heterozygosity 0.36 ± 0.009 in Northwest Indian populations (pooled) showed similitude with the Asian value (~37%). The overall pattern of allele frequency in the present study groups was found to be comparable with Asians but quite dissimilar to Caucasians.

The estimated allele frequencies and heterozygosities of APOC3 in various populations across the world are given in table 2. An examination of this table clearly shows that the APOC3 polymorphism shows greater variation in Asian populations and demonstrates relatively lower polymorphism in Europeans. In Caucasians *S2 allele was found to be the highest in Greeks (0.16) and lowest in Caucasians of UK (0.01) whereas, Mongoloids were found to exhibit the highest *S2 allele frequency, (0.48) in Chinese followed by Japanese (0.39) and Koreans (0.30). Average allele frequencies weighted upon sample size along with gene diversity analysis has been compiled in table 3. Here, the Japanese (0.36) but not the Chinese (0.298) showed highest weighted frequencies of *S2 followed by Koreans (0.278), Indians (0.268) and least in Caucasians (0.079). Chinese (44.3%), Japanese (44%), Indians (36.7%) and Asians (32.1%) showed higher

Table 1: Genotype and allele frequencies of APOC3 (SstI) in four ethnic groups of North India.

<table>
<thead>
<tr>
<th>Populations</th>
<th>S1S1</th>
<th>S1S2</th>
<th>S2S2</th>
<th>S1 ± S.E</th>
<th>S2 ± S.E</th>
<th>H</th>
<th>D_A</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banias (73)</td>
<td>4</td>
<td>5</td>
<td>23</td>
<td>23 (25.54)</td>
<td>5 (3.73)</td>
<td>0.774 ± 0.049</td>
<td>0.226 ± 0.049</td>
<td>0.35</td>
</tr>
<tr>
<td>Brahmins (69)</td>
<td>41</td>
<td>4</td>
<td>25</td>
<td>24 (20.44)</td>
<td>4 (3.48)</td>
<td>0.775 ± 0.05</td>
<td>0.225 ± 0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>JatSikhs (88)</td>
<td>54</td>
<td>6</td>
<td>28</td>
<td>28 (30.91)</td>
<td>6 (4.54)</td>
<td>0.773 ± 0.045</td>
<td>0.227 ± 0.045</td>
<td>0.35</td>
</tr>
<tr>
<td>Khatris (82)</td>
<td>47</td>
<td>3</td>
<td>27</td>
<td>27 (31.73)</td>
<td>3 (5.64)</td>
<td>0.738 ± 0.049</td>
<td>0.262 ± 0.049</td>
<td>0.39</td>
</tr>
<tr>
<td>Pooled (312)</td>
<td>187</td>
<td>22</td>
<td>103</td>
<td>103 (112.37)</td>
<td>22 (17.31)</td>
<td>0.764 ± 0.024</td>
<td>0.236 ± 0.024</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Values in parenthesis are expected numbers, H-Expected Heterozygosity, \(D_A \)- Departure from Hardy Weinberg Equilibrium

Table 2: Allele frequencies and heterozygosities of APOC3 (SstI) polymorphism in various populations of the World.

<table>
<thead>
<tr>
<th>Study Populations</th>
<th>S1</th>
<th>S2</th>
<th>N</th>
<th>H</th>
<th>Authors</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austrians</td>
<td>0.890</td>
<td>0.110</td>
<td>118</td>
<td>0.196</td>
<td>Paulweber et al. 1988</td>
<td>Au</td>
</tr>
<tr>
<td>Belgians</td>
<td>0.890</td>
<td>0.110</td>
<td>162</td>
<td>0.196</td>
<td>Paul-Hayase et al. 1992</td>
<td>Be</td>
</tr>
<tr>
<td>Danes</td>
<td>0.910</td>
<td>0.090</td>
<td>261</td>
<td>0.164</td>
<td>Tajaerg-Hansen et al. 1993</td>
<td>Da</td>
</tr>
<tr>
<td>Finland 1</td>
<td>0.920</td>
<td>0.080</td>
<td>61</td>
<td>0.147</td>
<td>Aalto-Setala et al. 1987</td>
<td>Fi1</td>
</tr>
<tr>
<td>Finland 2</td>
<td>0.860</td>
<td>0.140</td>
<td>50</td>
<td>0.241</td>
<td>Miettinen et al. 1994</td>
<td>Fi2</td>
</tr>
<tr>
<td>France (Lille)</td>
<td>0.931</td>
<td>0.069</td>
<td>152</td>
<td>0.128</td>
<td>Kee et al. 1999</td>
<td>Frl</td>
</tr>
<tr>
<td>France (Strasbourg)</td>
<td>0.906</td>
<td>0.094</td>
<td>208</td>
<td>0.17</td>
<td>Kee et al. 1999</td>
<td>Frs</td>
</tr>
<tr>
<td>France (Toulouse)</td>
<td>0.912</td>
<td>0.088</td>
<td>215</td>
<td>0.161</td>
<td>Kee et al. 1999</td>
<td>Frt</td>
</tr>
<tr>
<td>Greeks</td>
<td>0.840</td>
<td>0.160</td>
<td>50</td>
<td>0.269</td>
<td>Vavati et al. 1995</td>
<td>Gr</td>
</tr>
<tr>
<td>Italians 1</td>
<td>0.920</td>
<td>0.080</td>
<td>107</td>
<td>0.147</td>
<td>Xu et al. 1990</td>
<td>It1</td>
</tr>
<tr>
<td>Italians 2</td>
<td>0.920</td>
<td>0.080</td>
<td>314</td>
<td>0.147</td>
<td>Marasco et al. 1993</td>
<td>It2</td>
</tr>
<tr>
<td>Italians 3</td>
<td>0.919</td>
<td>0.081</td>
<td>62</td>
<td>0.149</td>
<td>Rigoli et al. 1995</td>
<td>It3</td>
</tr>
<tr>
<td>Ireland (Belfast)</td>
<td>0.944</td>
<td>0.056</td>
<td>186</td>
<td>0.106</td>
<td>Kee et al. 1999</td>
<td>Irb</td>
</tr>
<tr>
<td>Norway</td>
<td>0.880</td>
<td>0.120</td>
<td>33</td>
<td>0.211</td>
<td>Kessling et al. 1986</td>
<td>No</td>
</tr>
<tr>
<td>Scotland</td>
<td>0.880</td>
<td>0.120</td>
<td>117</td>
<td>0.211</td>
<td>Morris and Price, 1985</td>
<td>Sc</td>
</tr>
<tr>
<td>UK (Bristol)</td>
<td>0.920</td>
<td>0.080</td>
<td>90</td>
<td>0.147</td>
<td>Kessling et al. 1988</td>
<td>Uk2</td>
</tr>
<tr>
<td>UK (Caucasians)</td>
<td>0.990</td>
<td>0.010</td>
<td>92</td>
<td>0.02</td>
<td>Paul et al. 1987</td>
<td>Uk3</td>
</tr>
<tr>
<td>UK (Caucasians)</td>
<td>0.980</td>
<td>0.020</td>
<td>74</td>
<td>0.039</td>
<td>Ferns and Galton 1986</td>
<td>Uk4</td>
</tr>
<tr>
<td>UK (London)</td>
<td>0.980</td>
<td>0.020</td>
<td>35</td>
<td>0.039</td>
<td>Trembath et al. 1987</td>
<td>Uk6</td>
</tr>
<tr>
<td>UK (London)</td>
<td>0.980</td>
<td>0.020</td>
<td>47</td>
<td>0.039</td>
<td>Ferns et al. 1985</td>
<td>Uk7</td>
</tr>
<tr>
<td>UK (London)</td>
<td>0.980</td>
<td>0.020</td>
<td>31</td>
<td>0.039</td>
<td>Shoulders & Baralle, 1986</td>
<td>Uk8</td>
</tr>
<tr>
<td>UK (London)</td>
<td>0.960</td>
<td>0.040</td>
<td>81</td>
<td>0.077</td>
<td>Vella et al. 1985</td>
<td>Uk9</td>
</tr>
<tr>
<td>UK (London)</td>
<td>0.940</td>
<td>0.060</td>
<td>73</td>
<td>0.113</td>
<td>Kessling & Humphries, 1985</td>
<td>Uk10</td>
</tr>
<tr>
<td>UK (London)</td>
<td>0.930</td>
<td>0.070</td>
<td>123</td>
<td>0.13</td>
<td>Ferns and Galton, 1986</td>
<td>Uk11</td>
</tr>
</tbody>
</table>
average heterozygosities than Africans (22.4%) and Caucasians (13.7%) which manifest their greater differentiation at this locus (Table 3). It has been delineated that genetic diversity at APOC3 locus in Caucasians has the lowest total (H_T = 0.141) and within subpopulation (H_S = 0.137) gene diversities whereas Chinese showed these indices to be the highest (H_T = 0.464, H_S = 0.443). The percent of genetic differentiation (G_ST) attributable between populations relative to total

<table>
<thead>
<tr>
<th>Study Populations</th>
<th>S1</th>
<th>S2</th>
<th>N</th>
<th>H</th>
<th>Authors</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediterraneans</td>
<td>0.910</td>
<td>0.090</td>
<td>129</td>
<td>0.147</td>
<td>Antonarakis et al. 1988</td>
<td>Me</td>
</tr>
<tr>
<td>Caucasians Elsewhere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada (Quebec)</td>
<td>0.907</td>
<td>0.093</td>
<td>252</td>
<td>0.169</td>
<td>Haviland et al. 1991</td>
<td>Ca1</td>
</tr>
<tr>
<td>Canada (Vancouver)</td>
<td>0.950</td>
<td>0.050</td>
<td>38</td>
<td>0.095</td>
<td>Hayden et al. 1987</td>
<td>Ca2</td>
</tr>
<tr>
<td>US (Boston)</td>
<td>0.940</td>
<td>0.060</td>
<td>160</td>
<td>0.113</td>
<td>Hegele et al. 1989</td>
<td>Us1</td>
</tr>
<tr>
<td>US(Boston)</td>
<td>0.920</td>
<td>0.080</td>
<td>145</td>
<td>0.147</td>
<td>Ordovas et al. 1991</td>
<td>Us2</td>
</tr>
<tr>
<td>US (Boston)</td>
<td>0.896</td>
<td>0.104</td>
<td>371</td>
<td>0.186</td>
<td>Liu et al. 2004</td>
<td>Us3</td>
</tr>
<tr>
<td>US (Iowa)</td>
<td>0.920</td>
<td>0.080</td>
<td>36</td>
<td>0.147</td>
<td>Anderson et al. 1986</td>
<td>Us4</td>
</tr>
<tr>
<td>US (Seattle)</td>
<td>0.940</td>
<td>0.060</td>
<td>101</td>
<td>0.113</td>
<td>Deeb et al. 1986</td>
<td>Us5</td>
</tr>
<tr>
<td>US (Seattle)</td>
<td>0.910</td>
<td>0.090</td>
<td>366</td>
<td>0.164</td>
<td>Thompson et al. 1988</td>
<td>Us6</td>
</tr>
<tr>
<td>US (Whites)</td>
<td>0.905</td>
<td>0.095</td>
<td>823</td>
<td>0.172</td>
<td>Hallman et al. 2006</td>
<td>Us7</td>
</tr>
<tr>
<td>African-Americans</td>
<td>0.940</td>
<td>0.060</td>
<td>47</td>
<td>0.113</td>
<td>Buzza et al. 2001</td>
<td>AA1</td>
</tr>
<tr>
<td>Australia-Greeks 1</td>
<td>0.970</td>
<td>0.030</td>
<td>80</td>
<td>0.058</td>
<td>Buzza et al. 2001</td>
<td>AG1</td>
</tr>
<tr>
<td>Australia-Italians 4</td>
<td>0.880</td>
<td>0.120</td>
<td>76</td>
<td>0.211</td>
<td>Buzza et al. 2001</td>
<td>AI4</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese 1</td>
<td>0.770</td>
<td>0.230</td>
<td>151</td>
<td>0.354</td>
<td>Saha et al. 1995</td>
<td>Ch1</td>
</tr>
<tr>
<td>Chinese 2</td>
<td>0.610</td>
<td>0.390</td>
<td>73</td>
<td>0.476</td>
<td>Xiang et al. 1989</td>
<td>Ch2</td>
</tr>
<tr>
<td>Chinese 3</td>
<td>0.520</td>
<td>0.480</td>
<td>20</td>
<td>0.499</td>
<td>Rees et al. 1985</td>
<td>Ch3</td>
</tr>
<tr>
<td>Japanese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese 1</td>
<td>0.810</td>
<td>0.190</td>
<td>21</td>
<td>0.308</td>
<td>Rees et al. 1985</td>
<td>Jp1</td>
</tr>
<tr>
<td>Japanese 2</td>
<td>0.650</td>
<td>0.350</td>
<td>34</td>
<td>0.455</td>
<td>Paul et al. 1987</td>
<td>Jp2</td>
</tr>
<tr>
<td>Japanese 3</td>
<td>0.631</td>
<td>0.369</td>
<td>65</td>
<td>0.466</td>
<td>Bai et al. 1995</td>
<td>Jp3</td>
</tr>
<tr>
<td>Japanese 4</td>
<td>0.630</td>
<td>0.370</td>
<td>68</td>
<td>0.466</td>
<td>Thompson et al. 1988</td>
<td>Jp4</td>
</tr>
<tr>
<td>Japanese 5</td>
<td>0.620</td>
<td>0.380</td>
<td>74</td>
<td>0.471</td>
<td>Aburatani et al. 1988</td>
<td>Jp5</td>
</tr>
<tr>
<td>Japanese 6</td>
<td>0.610</td>
<td>0.390</td>
<td>35</td>
<td>0.476</td>
<td>Rees et al. 1986</td>
<td>Jp6</td>
</tr>
<tr>
<td>Koreans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea (Seoul)</td>
<td>0.755</td>
<td>0.245</td>
<td>92</td>
<td>0.37</td>
<td>Hong et al. 1997</td>
<td>Ko1</td>
</tr>
<tr>
<td>Korea (Seoul)</td>
<td>0.699</td>
<td>0.301</td>
<td>131</td>
<td>0.421</td>
<td>Song et al. 1998</td>
<td>Ko2</td>
</tr>
<tr>
<td>Africans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa (Blacks)</td>
<td>0.850</td>
<td>0.150</td>
<td>20</td>
<td>0.255</td>
<td>Rees et al. 1985</td>
<td>Af1</td>
</tr>
<tr>
<td>African-Americans</td>
<td>0.832</td>
<td>0.168</td>
<td>360</td>
<td>0.28</td>
<td>Hallman et al. 2006</td>
<td>Af2</td>
</tr>
<tr>
<td>Blacks</td>
<td>0.950</td>
<td>0.050</td>
<td>67</td>
<td>0.077</td>
<td>Antonarakis et al. 1988</td>
<td>Af3</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.940</td>
<td>0.060</td>
<td>42</td>
<td>0.113</td>
<td>Henderson et al. 1987</td>
<td>Sa</td>
</tr>
<tr>
<td>UK (Blacks)</td>
<td>0.870</td>
<td>0.130</td>
<td>53</td>
<td>0.226</td>
<td>Thompson et al. 1988</td>
<td>UKB</td>
</tr>
<tr>
<td>UK (Negroes)</td>
<td>0.730</td>
<td>0.270</td>
<td>28</td>
<td>0.394</td>
<td>Paul et al. 1987</td>
<td>UKN</td>
</tr>
<tr>
<td>Asians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabs 1</td>
<td>0.980</td>
<td>0.020</td>
<td>31</td>
<td>0.039</td>
<td>Tas 1989</td>
<td>Ar1</td>
</tr>
<tr>
<td>Arabs 2</td>
<td>0.840</td>
<td>0.160</td>
<td>63</td>
<td>0.269</td>
<td>Johansen et al. 1991</td>
<td>Ar2</td>
</tr>
<tr>
<td>Arabs 3</td>
<td>0.96</td>
<td>0.04</td>
<td>69</td>
<td>0.077</td>
<td>Johansen et al. 1990</td>
<td>Ar3</td>
</tr>
<tr>
<td>India (Punjabi Khatri)</td>
<td>0.738</td>
<td>0.262</td>
<td>82</td>
<td>0.387</td>
<td>Present study</td>
<td>IpK</td>
</tr>
<tr>
<td>India (Punjabi Banias)</td>
<td>0.775</td>
<td>0.225</td>
<td>69</td>
<td>0.349</td>
<td>Present Study</td>
<td>IpB</td>
</tr>
<tr>
<td>India (Punjabi Brahmins)</td>
<td>0.774</td>
<td>0.226</td>
<td>73</td>
<td>0.35</td>
<td>Present study</td>
<td>IpH</td>
</tr>
<tr>
<td>India (Punjabi JatSikhs)</td>
<td>0.773</td>
<td>0.227</td>
<td>88</td>
<td>0.351</td>
<td>Present study</td>
<td>Ijp</td>
</tr>
<tr>
<td>North West India 1</td>
<td>0.764</td>
<td>0.236</td>
<td>312</td>
<td>0.361</td>
<td>Present study</td>
<td>Nwi</td>
</tr>
<tr>
<td>Indian Asians</td>
<td>0.820</td>
<td>0.180</td>
<td>28</td>
<td>0.295</td>
<td>Rees et al. 1985</td>
<td>Ia</td>
</tr>
<tr>
<td>North India 2</td>
<td>0.704</td>
<td>0.296</td>
<td>216</td>
<td>0.417</td>
<td>Chhabra et al. 2003</td>
<td>Ni2</td>
</tr>
<tr>
<td>North India 3</td>
<td>0.688</td>
<td>0.312</td>
<td>151</td>
<td>0.425</td>
<td>Chhabra et al. 2004</td>
<td>Ni3</td>
</tr>
<tr>
<td>UK (Indian Asians)</td>
<td>0.81</td>
<td>0.19</td>
<td>24</td>
<td>0.308</td>
<td>Paul et al. 1987</td>
<td>Uki</td>
</tr>
<tr>
<td>Filipinos</td>
<td>0.770</td>
<td>0.230</td>
<td>84</td>
<td>0.354</td>
<td>Johansen et al. 1990</td>
<td>Ph</td>
</tr>
<tr>
<td>Taiwanese</td>
<td>0.736</td>
<td>0.264</td>
<td>159</td>
<td>0.389</td>
<td>Huang et al. 2006</td>
<td>Ta</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>0.674</td>
<td>0.326</td>
<td>351</td>
<td>0.439</td>
<td>Thu et al. 2006</td>
<td>Vi</td>
</tr>
<tr>
<td>Other Ethnic Groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>0.890</td>
<td>0.110</td>
<td>100</td>
<td>0.196</td>
<td>Relvas et al. 2005</td>
<td>Br</td>
</tr>
<tr>
<td>Dogrib Indians</td>
<td>0.750</td>
<td>0.250</td>
<td>130</td>
<td>0.375</td>
<td>Cole et al. 1989</td>
<td>Di</td>
</tr>
</tbody>
</table>
genetic diversity was observed to be the highest in Africans (0.094) followed by Arabs (0.048), Chinese (0.046) and Indians (0.035). Considering all populations together only 10.8% of the total genetic diversity has been apportioned to between population variation.

The unbiased genetic distance (DA) was calculated for all 70 populations but the relationship was difficult to display and interpret. Therefore, allele frequencies for major groups were pooled and used for genetic distance calculations. In this analysis, all Caucasians (Europe and elsewhere) were pooled. The resultant multidimensional data matrix is reduced into UPGMA and Neighbor-joining dendrograms (Fig. 1A and 1B). Contrary to the expectations, Northwest Indian populations (pooled) form a distinct single point cluster separated widely from particularly the Caucasians and aligned as outer element to the cluster of East Asian populations.

Correspondence analysis of 70 populations is presented in figure 2. In this plot, Caucasian

Table 3: Compiled data showing genetic diversity analysis of 70 populations across the world

<table>
<thead>
<tr>
<th>Population groups (number)</th>
<th>Average estimated allele frequencies</th>
<th>Average frequencies weighted upon sample size</th>
<th>Gene Diversity Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*S1</td>
<td>*S2</td>
<td>*S1</td>
</tr>
<tr>
<td>Caucasians in Europe (25)</td>
<td>0.924</td>
<td>0.076</td>
<td>0.921</td>
</tr>
<tr>
<td>Caucasians elsewhere (12)</td>
<td>0.926</td>
<td>0.074</td>
<td>0.914</td>
</tr>
<tr>
<td>Chinese (3)</td>
<td>0.633</td>
<td>0.367</td>
<td>0.702</td>
</tr>
<tr>
<td>Japanese (6)</td>
<td>0.658</td>
<td>0.342</td>
<td>0.637</td>
</tr>
<tr>
<td>Koreans (2)</td>
<td>0.727</td>
<td>0.273</td>
<td>0.722</td>
</tr>
<tr>
<td>Africans (6)</td>
<td>0.855</td>
<td>0.145</td>
<td>0.851</td>
</tr>
<tr>
<td>Arabs (3)</td>
<td>0.880</td>
<td>0.120</td>
<td>0.846</td>
</tr>
<tr>
<td>Asians (11)</td>
<td>0.88</td>
<td>0.12</td>
<td>0.846</td>
</tr>
<tr>
<td>Indians (8)</td>
<td>0.752</td>
<td>0.248</td>
<td>0.732</td>
</tr>
<tr>
<td>All populations (70)</td>
<td>0.844</td>
<td>0.156</td>
<td>0.854</td>
</tr>
</tbody>
</table>

Fig. 1. UPGMA and neighbour joining dendrograms of main populations based upon APOC3 SstI polymorphism.
Fig. 2. Correspondence Analysis Plot of APOC3 allele frequencies

Fig. 3. Clinal heterogeneity of APOC3 in Asia
populations from all over the world constitute a tight cluster on the right-hand side, while majority of Mongoloid along with Northwest Indian groups are on the left hand side. The African population groups along with Arabs are scattered in the middle. Three populations (Brahmins, Banias and JatSikhs) of Punjab form their own loose cluster on top left-hand side of the plot. Punjabi Khatri who showed slightly higher frequency of *S2 allele is isolated from other Punjabi populations and is aligned towards Mongoloid populations (lower left hand side on the plot). The CA plot needs caution in interpretations as it is based only on single locus. Overall, the plot clearly shows that Indians form a distinctive group with reference to this locus.

DISCUSSION

The main aim of this study was to investigate the genetic heterogeneity of APOC3 SstI locus in four ethnically well defined populations i.e. Banias, Brahmins, Jat, Sikhs and Khatris of Punjab, a Northwest state of India which is considered to be the high incidence CHD belt. The alleles at APOC3 SstI locus display considerable variation between the present study and various other populations of the world confirming the wide range of incongruity at this locus both at regional and inter-regional level.

It is important to investigate different kinds of polymorphisms in different genes to understand spectrum and functional consequences of mutations. Therefore, it is recognized that investigation of APOC3, 3’UTR polymorphism is important as it has been associated with elevated serum triglycerides as well as increased risk of CHD in many populations and can be employed as an adjunct in CHD risk calculations, though not directly influencing or causing these disorders. Higher *S2 allele frequencies in various ethnic groups of Punjab, a high fat consuming belt of India, may shed light on the adverse effects of *S2 allele on these diseases. In the present sample, 40% of the individuals carried one or two copies of the susceptible allele and are therefore more susceptible for HTG and this may have public health consequences.

Regression analysis of APOC3 allele frequencies from 14 geographically well defined populations of Asia showed a contrast cline to that of European populations but none of the R² values are statistically significant, so the interpretation needs prudence. Such clinal heterogeneity lenses the evolutionary factors like selection of the gene, which may be informative in dealing with overseas patients of different regions. Due to different linkage disequilibrium scores and their expression, selection may favour one genotype or allele at one extreme and disfavour it at other.

Continently in Asia, when percent CHD mortality was compared with *S2 allele frequency, its association with CHD is consistent in China, India and Korea but not compatible with Taiwan, Japan and S. Arabia. In Europe also, there are instances where *S2 allele is low in the areas where death certification (per 100, 000) because of CHD is high like Ireland, UK and Denmark. The above comparisons need caution as direct correlations with a multifactorial disease like CHD are unlikely to be consistent in all populations. These imperfect associations of *S2 allele expression with CHD in different populations of the world may have many unforeseen mechanisms involved. To begin with, it is possible that the influence of SstI RFLP on plasma TG could be potentially confounded by other neighboring loci such as APOA5, a newly identified TG regulator and modifier gene localised in the close proximity of ApoAI-CIII-AIV gene cluster. Secondly, it is also possible that SstI RFLP of APOC3 gene may be involved in modulating TGs differently in different ethnic groups because of its different linkage disequilibrium scores with other gene variants (coding or regulatory regions). Furthermore, some haplotypes of APOC3 SstI and promoter variants affects TG homeostasis, therefore: this polymorphism may have some impact on mRNA stability as suggested by Smith et al. (1992).

Ordovas et al. (2002) has demonstrated that APO A-I gene of its Apo AI-CIII-AIV gene complex may influence response to environmental factors such as dietary fats. Differences in diet can be important link in the wide variability of APOC3 SstI polymorphism because dietary habits influence the same phenotypic CHD risk factor
as minor allele *S2 of this polymorphism (TG levels). From the last many years, it is well understood that it is better to monitor TG than cholesterol levels in determining hyperlipidemic status in countries like India, where generally low protein and high carbohydrate diet is consumed. In addition, Indians are considered to be more sensitive to the exacerbating effects of hypertriglyceridermia (Enas and Mehta 1995).

In the genetic landscape of APOC3 SstI polymorphism across various populations of the world, the nutritional behavior of some populations can be attributable to higher prevalence of *S2 allele despite having low CHD mortality for instance in Japan, China and S. Arabia. In these countries high protein and low carbohydrate/fat diet is consumed in comparison to India, Taiwan and Korea.

Perez-Martinez et al. (2001) has shown that *S2 allele may modulate the magnitude of atherogenesis and dyslipidemic state significantly \((P < 0.039) \) when patients changed their diet from saturated fatty acids (SFA) to Mediterranean diet (olive oil). Moreover, APOC3 polymorphism affects insulin response to oral glucose tolerance test (OGTT) in persons consuming high saturated fats (Salas et al. 1998). Thus, APOC3 SstI polymorphism plays an imperative role in determining the levels of lipid response to the dietary changes. Such inter-actions may be helpful to expose the link between inter population variability of CHD prevalence and APOC3 SstI polymorphism in relation to the dietary behavior.

ACKNOWLEDGEMENTS

We are indebted to all the study participants for their exceeding help and support. The support of the research grants by the Council of Scientific and Industrial Research to P.P. Singh and Department of Science and Technology, New Delhi to M. Singh is highly acknowledged.

REFERENCES

