INTRODUCTION

It is considered that about 15% of all recognized pregnancies terminate in spontaneous abortions (Reid et al. 1972). The hypothesis advanced by Streeter (1931), Hertig and Rock (1949) that the principal aetiological factor in spontaneous abortion is an intrinsic anomaly in the fertilized ovum, a so-called germplasm defect has confirmed by the observation that a high proportion of such abortuses are chromosomally abnormal (review by Carr 1971). It is generally accepted that between 25 to 35% of all recognizable spontaneous abortions are caused by chromosomal anomalies (Carr 1969; Larson and Titus 1970; Pawlowitzki 1972). The frequency of chromosomal abnormalities in embryos 3.8 to 7.5%, in fetuses 1.5 to 2% in still births 6.0 to 7.0%, in newborns 0.6%, in children (upto 7-8 years) 0.5% and in adults 0.4% (Diwald and Michels 1986; Boue and Boue 1978). In adults chromosomal abnormalities are found 4 in 1000, of these 50% occur in genetically balanced form. Of all spontaneous abortions 50 to 80% show a chromosome anomaly 94% of all detectable chromosomal abnormalities are associated with clinically recognizable fetal wastage. Chromosomal abnormality is a major cause of fetal loss and extensive surveys have shown that some 20-30% abortuses are aneuploid (Carr 1971; Boue et al. 1975; Creasy et al. 1976). The mean incidence of cytogenetic anomalies in 6639 couples investigated for recurrent abortions (Chandley 1983; Schwertz and Planner 1983; Fryns et al. 1984; Travers, personal communications) is 6.65%. Bhasin et al. (1972) reported among 16 couples and 11 women one of the partners in two cases showed premature centromeric division. The female was 26 years old with two recurrent spontaneous abortions. Her husband was normal with 46, XY chromosomal complement. Other three males are with 31, 33 and 33 years of age respectively. Their wives have experienced 2, 2 and 4 recurrent spontaneous abortions respectively with normal 46, XX chromosomal complement.

MATERIAL AND METHODS

In the present study fifty couples were selected from Visakhapatnam district and included in the study ascertained with recurrent spontaneous abortions, majority of individuals were couples who had two or more spontaneous abortions. A complete case history was taken from the patient, this include personal particulars, family history, detailed pedigree chart and the result of laboratory or other investigations that had been conducted.

The mitotic chromosomes of the subjects investigated were prepared for cytogenetic evaluation by standard techniques. G banding in order to facilitate identification of individual chro-
mosomes was done for all cases. A minimum of 25 banded metaphase plates were analysed for routine Karyotyping and for observing chromosomal aberrations.

RESULTS

The cytogenetic abnormalities among recent spontaneous aborters of 28 separate surveys have been presented in table 1. There are altogether 17047 patients from all the 28 separate series and out of which 486 patients exhibited chromosomal abnormalities. Increased percentage of abnormalities were recorded by Nordenson (1980) and Gupta et al. (1995) where the percentage of abnormalities were 45.00 and 28.57 respectively. One of the causes of this increased figures may be attributed to the small size studied. The mean percentage of abnormalities can be recorded as 2.86. The present study records abnormality in six individual (6.00%) out of 100 cases studied.

From table 1 it may be observed that the frequency of chromosomal abnormalities that are recorded range from 0.86% - 45% The upper limit of 45% was reported by Nordenson (1980) and the lower limit of 0.86% was reported by Kajii et al. (1978). The high variation in percentage of abnormal cases in these surveys may be attributed to the lack of uniformity in selecting the couples i.e those with different number of spontaneous abortions (one or more spontaneous abortions) and with different gestational ages.

From the table 2 it is evident that a male aged 35, whose wife has experienced 2 spontaneous abortions and a female aged 30 experienced 3 spontaneous abortions showed Acrocentric Chromosome Association. Three males (31,33 and 33 years of age, respectively) whose wives have experienced 2,4 and 2 spontaneous abortions respectively exhibited premature centromeric division of cells. A female with 26 years of age experienced 2 spontaneous abortions also shows premature centromeric division

In the present study out of 100 cases, a male aged 35, with 2 repeated spontaneous abortions to her wife showed acrocentric chromosome association. Out of 2 pregnancies, 1of which ended at about 2 months of gestation and 1at about 3 months of gestation. The proband was born when her father and mother were 38 years and 31 years of age respectively and no abnormalities were noticed at birth or thereafter. He was normal phenotypically and mentally. The wife of the proband aged 29 is a healthy and well developed female with normal 46, XX chromosomal complement. Another female aged 30 years with 3 repeated spontaneous abortions exhibited acro-
centric chromosome association (Fig.1). Out of 3 pregnancies 2 of which ended at about 2 months of gestation and one at about 3 months of gestation. The proband was born when her father and mother were 34 and 28 years of age respectively. She was normal phenotypically and mentally. The husband of the proband aged 34 is a healthy and well developed male with normal 46, XY chromosomal complement.

From the table 3 it is evident that three males whose wives have experienced 2, 2 and 4 spontaneous abortions showed 9%, 17% and 21% of premature centromeric division cells respectively (Fig. 2). A female with 2 spontaneous abortions shows 47% of premature centromeric division cells.

DISCUSSION

Human acrocentric chromosomes are frequently found in association. These associations have been subject to a number of investigations, with some workers reporting random and others nonrandom involvement of the acrocentrics and contradictory results when their dependence on sex has been examined (Warburton et al. 1973; Galperin 1969; Galperin-Lemaitre et al. 1977). This phenomenon might be related to frequencies of nondisjunction (Hansson 1979). While it is recognized that all chromosomes are predisposed to nondisjunction it has been suggested that certain chromosomes display an increased frequency of nondisjunction. As one third of trisomies observed in spontaneous abortions and live births involve acrocentric chromosomes (Hassold and Jacobs 1984), it has been proposed that the presence of nucleoli organizing regions on the short arms of all five acrocentric chromosomes predispose them to nondisjunction (Polani et al. 1960; Mirre et al. 1980; Schmickel et al. 1985; Garcia et al. 1989) with the identification of DNA polymorphism, it is now possible to determine with confidence the parental origin of the additional chromosomes in most trisomies (Hassold and Sherman 1993).

Association between acrocentric chromosomes are very obvious in human metaphases. The phenomenon called satellite association was first reported by Ferguson Smith and Handmaker (1961). Harnaden (1961) Ohno et al. (1961) observed in mitotic metaphases. The phenomenon of satellite association was also reported in meiosis by Ferguson-Smith (1964). The question

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Sex</th>
<th>Age (in years)</th>
<th>No. of abortions</th>
<th>Chromosomal anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Male</td>
<td>35</td>
<td>02</td>
<td>Acrocentric Chromosome Association</td>
</tr>
<tr>
<td>2.</td>
<td>Female</td>
<td>30</td>
<td>03</td>
<td>Acrocentric Chromosome Association</td>
</tr>
<tr>
<td>3.</td>
<td>Male</td>
<td>31</td>
<td>02</td>
<td>Premature Centromeric division</td>
</tr>
<tr>
<td>4.</td>
<td>Male</td>
<td>33</td>
<td>02</td>
<td>Premature Centromeric division</td>
</tr>
<tr>
<td>5.</td>
<td>Male</td>
<td>33</td>
<td>04</td>
<td>Premature Centromeric division</td>
</tr>
<tr>
<td>6.</td>
<td>Female</td>
<td>26</td>
<td>02</td>
<td>Premature Centromeric division</td>
</tr>
</tbody>
</table>

Table 3: Percentage of premature centromeric division cells in lymphocyte cultures observed in the present study.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Sex</th>
<th>% of PCD cells</th>
<th>No. of abortions</th>
<th>Karyotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>09</td>
<td>2</td>
<td>46, XY</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>17</td>
<td>2</td>
<td>46, XY</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>21</td>
<td>4</td>
<td>46, XY</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>47</td>
<td>2</td>
<td>46, XX</td>
</tr>
</tbody>
</table>

Fig. 2. Metaphase showing premature centromere division

In the present study it is observed that premature centromere division cells are observed in 4 individuals out of 50 spontaneous abortion couples (4.00%). Here only few cells are showing premature centromere division. But they showed normal 46, XX (female) and 46, XY (male) chromosomal complement in other cells.

DISCUSSION

Human acrocentric chromosomes are frequently found in association. These associations have been subject to a number of investigations, with some workers reporting random and others nonrandom involvement of the acrocentrics and contradictory results when their dependence on sex has been examined (Warburton et al. 1973; Galperin 1969; Galperin-Lemaitre et al. 1977). This phenomenon might be related to frequencies of nondisjunction (Hansson 1979). While it is recognized that all chromosomes are predisposed to nondisjunction it has been suggested that certain chromosomes display an increased frequency of nondisjunction. As one third of trisomies observed in spontaneous abortions and live births involve acrocentric chromosomes (Hassold and Jacobs 1984), it has been proposed that the presence of nucleoli organizing regions on the short arms of all five acrocentric chromosomes predispose them to nondisjunction (Polani et al. 1960; Mirre et al. 1980; Schmickel et al. 1985; Garcia et al. 1989) with the identification of DNA polymorphism, it is now possible to determine with confidence the parental origin of the additional chromosomes in most trisomies (Hassold and Sherman 1993).

Association between acrocentric chromosomes are very obvious in human metaphases. The phenomenon called satellite association was first reported by Ferguson Smith and Handmaker (1961). Harnaden (1961) Ohno et al. (1961) and observed in mitotic metaphases. The phenomenon of satellite association was also reported in meiosis by Ferguson-Smith (1964). The question

Table 2: Chromosomal abnormalities observed in 50 couples with spontaneous abortions

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Sex</th>
<th>Age (in years)</th>
<th>No. of abortions</th>
<th>Chromosomal anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Male</td>
<td>35</td>
<td>02</td>
<td>Acrocentric Chromosome Association</td>
</tr>
<tr>
<td>2.</td>
<td>Female</td>
<td>30</td>
<td>03</td>
<td>Acrocentric Chromosome Association</td>
</tr>
<tr>
<td>3.</td>
<td>Male</td>
<td>31</td>
<td>02</td>
<td>Premature Centromeric division</td>
</tr>
<tr>
<td>4.</td>
<td>Male</td>
<td>33</td>
<td>02</td>
<td>Premature Centromeric division</td>
</tr>
<tr>
<td>5.</td>
<td>Male</td>
<td>33</td>
<td>04</td>
<td>Premature Centromeric division</td>
</tr>
<tr>
<td>6.</td>
<td>Female</td>
<td>26</td>
<td>02</td>
<td>Premature Centromeric division</td>
</tr>
</tbody>
</table>
of non-random participation of the acrocentic chromosomes in satellite association was discussed by many authors even before the banding techniques made it possible to identify the individual chromosome types within the D and G groups. A higher tendency of the G group chromosomes to be involved in satellite association has been reported by e.g Zang and Back (1966) and Cohen and Shaw (1967). Other authors reported a random association pattern of the D group chromosomes (Shaw et al. 1969; Cuevas Sosa 1970).

Thus the observation in the present study shows the acrocentric chromosome association is higher in both partners experiences two or more recurrent miscarriages. Acrocentric chromosome associations are highly relevant because most aneuploidic conceptuses result from meiotic nondisjunction during gametogenesis.

Premature centromeric division has been described by Fitzgerald (1975), Fitzgerald and McEwan (1977), Galloway and Buckton (1978) in aged women in association with aneuploidy of X-chromosome. Vig (1984) proposed a hypothesis that premature centromeric division may result in non-disjunction by impairing the attachment of prematurely separated centromeres to spindle fibres. Miller et al. (1990) reported association of Premature centromeric division with various aneuploidies in a high percentage supporting a functional relationship between disturbances in the mechanism of centromere separation and chromatid separation at cell division.

An increased frequency of mitoses with centromere separation affecting all chromosomes was found in lymphocyte cultures from a couple with recurrent spontaneous abortions. Katalin Bajnoczky et al. (1993) concludes that patients with altered centromere functions may have an increased risk for chromosome instability and that the abnormal behaviour of centromeres may predispose the individual to cell division errors, the consequences of which may be a spontaneous abortion.

The increased frequency of mitosis with centromere separation affecting all chromosomes was found in Lymphocyte culture from a couple with recurrent spontaneous abortions reported by Bajnoczky et al. (1993) who concluded that patients with changed centromeric functions may have an increased risk for chromosomal instability and that the abnormal behaviour of centromere may predispose the individual to cell division errors, the consequence of which may be a spontaneous abortion. Increased frequency of mitosis showing premature centromere division was also reported by Gabarron et al. (1986).

Murthy and Prabhakaran (1990) reported a female with a history of spontaneous abortions and subsequent birth of Downs Syndrome Child. She was normal female with 46, XX chromosome complement with 20.5% cells with premature centromere division. Her husband was normal with 46, XY chromosome complement. He concluded that higher incidence of mitotic disturbances finally resulting in aneuploidy.

Table 4: Premature centromeric division reported in various studies

<table>
<thead>
<tr>
<th>References</th>
<th>Number of cases investigated</th>
<th>Number abnormal</th>
<th>% of PCD cells</th>
<th>Type of study</th>
<th>% of PCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudd et al. (1983)</td>
<td>03</td>
<td>03</td>
<td>14</td>
<td>Habitual Abortions</td>
<td>100%</td>
</tr>
<tr>
<td>Gabarron et al. (1986)</td>
<td>01</td>
<td>01</td>
<td>36</td>
<td>Habitual Abortions</td>
<td>100%</td>
</tr>
<tr>
<td>Murthy and Prabhakaran (1990)</td>
<td>01</td>
<td>01</td>
<td>20.5</td>
<td>Habitual Abortions</td>
<td>100%</td>
</tr>
<tr>
<td>Katalin Bajnoczky (1993)</td>
<td>02</td>
<td>02</td>
<td>29.7(W)</td>
<td>Habitual Abortions</td>
<td>100%</td>
</tr>
<tr>
<td>Anuradha (1999)</td>
<td>140</td>
<td>06</td>
<td>16</td>
<td>Habitual Abortions</td>
<td>4.28%</td>
</tr>
<tr>
<td>Present Study (2002)</td>
<td>100</td>
<td>04</td>
<td>4.00%</td>
<td>Habitual Abortions</td>
<td></td>
</tr>
</tbody>
</table>
tion is evident by spontaneous abortions and Downs Syndrome child.

Thus the observation in the present study shows the patients with altered centromere functions may predispose to cell division errors due to chromosome instability and thus may lead to spontaneous abortion.

Investigation using molecular techniques on large samples will help to understand the exact reason for the increase in the Acrocentric chromosome association and premature centromere division in aborted couples and its role in nondisjunction.

REFERENCES

Galperin H 1969. Number of each type of acrocentric association and probability of its occurrence in human male and female metaphase cell. Cytogenetics, 8: 434-446.

Streeter GL 1931. Development of eggs as seen by the embryologist. Scientific Monthly. 32: 495.

Welstenholme MTW, Faed Robertson, Lamont MA 1983. Chromosome abnormality in couples with histories of multiple abortions, the outcome of pregnancies subsequent to ascertainment and a study of familial translocation carriers. Hum Genet, 63: 45-47.
