Study of Genetic Polymorphism at D21S11 and D21S215 Loci in the Jat Sikh Population of Punjab

I.S. Sidhu¹, K. Kaur¹, V.K. Sarhadi², D.S. Joshi³, R. Mukhopadhaya¹, S.K. Mahajan¹ and A.J.S. Bhanwer

1. Department of Human Genetics, Guru Nanak Dev University, Amritsar 143 005, Punjab India
2. Centre for Genetic Disorders, Guru Nanak Dev University, Amritsar 143 005, Punjab India
3. Molecular Biology and Agriculture Division, BARC, Trombay, Mumbai 400 085, Maharashtra, India

KEY WORDS Microsatellite; PCR; genetic polymorphism; DNA; primers

ABSTRACT Microsatellites, 1-6 bp long tandem repeats, are new class of polymorphic DNA markers and has many advantages over other DNA markers like minisatellites, VNTRs etc. due to which, these become markers of choice for studying genetic polymorphism at population level, forensic investigations, linkage studies etc. Genotyping of populations can provide genetic basis for affinities among different ethnic groups. Polymorphism revealed by microsatellites could be used to study the micro-evolutionary trends among populations. In the present study polymorphism at two microsatellites markers D21S11 (four bp repeat) & D21S215 (two bp repeat) studied among the Jat Sikh population of Punjab, India. Eight alleles of D21S11 and four alleles of D21S215 with heterozygosities 82.2% and 66.6% were observed respectively. Allelic polymorphism was compared with the data available for other Indian populations and Caucasoid population at D21S11 locus.

INTRODUCTION

The genetic information in humans is present in nucleus and mitochondria. The size of nuclear and mitochondrial genome is approximately 3 x 10⁹ bp and 16569 bp, respectively. Almost all mitochondrial genome and <10% of the nuclear genome is coding. In earlier population biology studies, most of the research was based on phenotypes, so more emphasis was given to the coding region of the genome. The non coding DNA was considered as junk DNA with apparently no known function. However, with the advent of molecular genetic techniques, the term junk DNA has become obsolete as it has been discovered that this non coding DNA exhibits high degree of genetic polymorphism which makes it an ideal genetic material for population genetic studies, forensic studies and for molecular diagnosis of various genetic disorders (Strachan and Read 1996).

Approximately 20% of the non coding DNA is composed of moderately to highly repetitive sequences, called repetitive DNA, in which repetitive elements are arranged in tandem, and are classified as satellite, minisatellite and microsatellite sequences, depending upon the size of the repeating sequence and degree of repetition in the genome. The microsatellites DNA form a significant proportion of the growing family of repetitive DNA sequences which are widely dispersed throughout the nuclear genome. If sequenced and amplified by the PCR, microsatellites may be used as highly informative, locus specific markers (Krawczak and Schmidtke 1994). These microsatellite markers have distinct advantages over other DNA and RFLP markers due to following reasons:

i) they are easily typed by polymerase chain reaction (PCR). Thus less amount of DNA and less time is required for their typing which also reduces the cost of their analysis.

ii) they are inherited in Mendelian co dominant fashion and thus can be easily traced back in a family or group of persons.

iii) they exhibit extreme degree of genetic polymorphism and most of the microsatellite markers have more than 70% heterozygosity.

iv) they are distributed throughout the human nuclear genome.

A large amount of data on traditional genetic markers for various Indian populations is available but scanty data is available on the polymorphism of microsatellite markers for Indian subcontinent. However, this type of baseline data is necessary to carry out medical genetic, population genetic and...
forensic investigations using modern molecular genetic techniques. Keeping this in mind, an attempt to study DNA polymorphism in Jat Sikhs, a distinct endogamous group of India, was undertaken at two microsatellite markers of HC 21 i.e. D21S11 and D21S215.

MATERIALS AND METHODS

Markers Studied: D21S11 is localised at 21q21, which is AT rich but gene poor region of the chromosome 21. It is 64cM apart from D21S19 in the linkage map based on the assumption of equal recombination frequency in males and females but 43cM in male linkage map and 90cM in female linkage (Tanzi et al. 1988). This is a tetranucleotide (TCTA) \(n \) repeat (Sharma and Litt 1992) and the exact sequence is: \((TCTA)_{4} (TCTG)_{6} (TCTA)_{3} TA(TCTA)_{3} TC \). Thus it is evident from the sequence that D21S11 is a complex microsatellite marker i.e. mixture of perfect and compound type of repeats (Webber 1990).

The other microsatellite marker D21S215 is present on pericentric region of chromosome 21. It is a dinucleotide marker having repeat unit (GT)\(n \) (Warren et al. 1992). Recombination frequency between D21S215 and alphoid sequences of centromere is 0% (Peterson et al. 1992).

Population Studied: The present investigation was carried out on DNA samples of Jat Sikhs who were selected randomly from the state of Punjab. Approximately 60% of the Sikh population in Punjab consists of Jat Sikhs, thus making them the single largest endogamous group in Punjab. They are endogamous at caste level and exogamous at the (gotra) sub-caste level. Historical references note their presence here from 6th and 7th centuries AD. Major Todd classified Jats as one of the great Rajput tribes but General Cunningham held the view that the Rajput belonged to the original Aryan stock whereas the Jats belonged to the later wave of immigrants from the north-west, probably of Scythian race (Ibbetson 1984).

Sample Collection: 2ml of venous blood sample from 40 Jat Sikh individuals was collected in sterilised tubes containing 0.5 M EDTA as an anti coagulant. Proper care was taken to obtain blood samples of only unrelated healthy individuals. A brief family history of the individuals was asked to rule out any adoptions and the presence of any genetic disorder in the family. The blood samples were transported on ice to the laboratory and stored at -20°C till analysis.

Laboratory Analysis: The protocol of Miller et al. (1988) with slight modifications was used to extract DNA from these samples. The quality and quantity of DNA was checked by agarose electrophoresis and spectrophotometrically. The samples were then amplified by PCR using locus specific primers for these microsatellite markers. 50 ng of DNA was used for every PCR reaction.

The primers used for D21S11 marker were same as were reported by Sharma and Litt (1992) sequences of which were:

Primer 1: 5’ GTG AGT CAA TTC CCC AAG 3’
Primer 2: 5’ GTT GT A TT A GTC AA T GTT CTC C 3’

Following set of primers was used for PCR amplification of D21S215 marker:

Primer 1: 5’-TCT AAA ACA GTG TGT CTA GC-3’
Primer 2: 5’-GCT GAC GTG ACA GTT GTG AG-3’

One of the two primers, for each marker, was end labelled with \(^{32}\)P \(\gamma \)- ATP. The labelled primer was added to the reaction mix so that 1 x 10^5 cpm of radioactivity was present for every 20 \(\mu \)l of PCR cocktail. PCR was carried out on Perkin-Elmer Thermal Cycler.

PCR conditions consisted of initial denaturation step of 5 min at 94°C followed by 5 cycles at 94°C for 1 min; 61°C for 1 min; 72°C for 1 min; and next 25 cycles at 94°C for 40 sec; 61°C for 40 sec; 72°C for 40 sec. The last extension was done at 72°C for 5 minutes.

The PCR programme used for D21S215 marker was same as that for D21S11 marker except that the annealing temperature was 51°C.

The amplified gene products were loaded on 0.4 mm thick 5% denaturing polyacrylamide gel for typing various alleles of these markers. The gel was pre-run for 30 min to remove impurities. The PCR products were also denatured at 94°C for 5 minutes and then immediately ice-chilled and then promptly loaded. The ATGC sequencing ladder was also loaded at regular intervals of 6 wells in the gel so as to size the alleles which could differ by even a single base pair. USB Sequenase-2 PCR product sequencing kit was used to prepare sequencing ladder which was labelled with \(^{35}\)S radioisotope. PAGE was performed at constant power of 55 watts. The gels were dried and then autoradiography was done to determine the size of various alleles of both the microsatellite markers.

Statistical Analysis: The allele frequency of all the alleles observed in the sample of population analyzed was calculated using the following formula (Bodmer and Cavalli-Sforza 1976)
Frequency of i^{th} allele = \(\frac{\text{Number of } "i" \text{ alleles in the sample}}{\text{Total number of alleles in the sample}} \)

The observed heterozygosity was calculated by counting the number of total heterozygotes in the sample while the expected heterozygosity was calculated according to the formula (Roychoudury 1988)

\[\text{Het.} = 1 - \sum p_i^2 \]

where p_i is the frequency of the i^{th} allele.

RESULTS

In the present study, a total of 80 chromosomes for marker D21S11 and 52 chromosomes for marker D21S215 were studied. 8 alleles of D21S11 were observed in the samples analysed with their allele size of 212 to 240 bp while for microsatellite marker D21S215, 4 alleles were observed in the size range of 166 bp-172 bp. The expected heterozygosities for D21S11 and D21S215 microsatellites markers was found out to be 82.2% and 66.6%.

Figure 1 shows the frequency of each of the 8 alleles. 4 out of 8 alleles occur at a frequency of 15% or more while allele having 232 bp with 11.3%. The most frequent allele was 224 bp allele (25%) followed closely by 220 bp allele (21.3%). Out of
the 4 alleles observed for marker D21S215, the allele with 168 bp size was found out to be maximum frequent i.e. 50% and alleles with 166 bp and 170 bp were present in 19% of the samples analyzed for this markers (Fig. 2).

DISCUSSION

Genotyping of populations can provide genetic basis for affinities among different ethnic groups. Studies have indicated that allelic frequency distribution for hypervariable markers may vary considerably for different social and ethnic groups (Deka et al. 1995). The Indian subcontinent is a rich mixture of endogamous groups, which are maintaining their genetic identity due to high degree of endogamy. In order to fully understand the nature and extent of genetic heterogeneity of the Indian subcontinent, an extensive database on different polymorphic DNA markers is needed. Although extensive data on various blood group markers, protein and enzyme polymorphic markers and HLA etc. is already available, however, only scanty data on DNA markers is available for North-West India. Earlier studies on D21S11 polymorphism (Bhanwer et al. 1997) and (Mahajan et al. 1998) in India were done on general population consisting of individuals from various endogamous groups. Thus they are not a true representation of the genetic structure for any specific endogamous group. The present study is an effort to generate a basic gene frequency distribution data at two microsatellite loci (D12S11 & D21S215) in Jat Sikhs a distinct endogamous group of Punjab.

The observed heterozygosity for D21S215 marker was 65%, which was quiet low as compared to other reported microsatellite markers. This low degree of heterozygosity at this locus may be due to the following reasons:

i) Microsatellite D21S215 is closely linked (0 cM) to the alphoid sequences of centromere of chromosome 21 (Warren et al. 1992) and (Peterson et al. 1992). From this linkage disequilibrium, it is probable that this marker will exhibit the same behaviour as exhibited by alphoid sequences of centromere during cell division. (Marcais et al. 1990) analysed the alphoid sequences of chromosome 13 and of chromosome 21 of more than 30 unrelated individuals and found that alphoid sequences are inherited in Mendelian fashion and no meiotic recombination was detected in over 150 meiosises scored in their study. Crossing over during meiosis ensures genetic uniqueness leading to increased heterozygosity and absence of crossing over to a greater extent favours homozygosity. This could be one of the reasons for low heterozygosity and an increased homozygosity of this genetic marker in our population.

ii) Statistically due to small allele number (i.e. only 4 alleles have been observed at this locus in this population) and uneven distribution of these alleles (i.e. frequency of allele 168 bp is very high (50%) as compared to other alleles) could also be one of the factors attributing to

Table 1: Allele size, number of alleles and heterozygosity at D21S11 locus in different populations

<table>
<thead>
<tr>
<th>Population groups studied</th>
<th>Caucasian</th>
<th>Indian</th>
<th>Jat Sikh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomes studied</td>
<td>72</td>
<td>317</td>
<td>80</td>
</tr>
<tr>
<td>Alleles observed</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Allele size (bp)</td>
<td>172-264</td>
<td>208-248</td>
<td>212-240</td>
</tr>
<tr>
<td>Heterozygosity</td>
<td>0.9</td>
<td>0.86</td>
<td>0.822</td>
</tr>
</tbody>
</table>

Table 2: Allele size and gene frequency of different alleles of D21S11 locus in different population groups

<table>
<thead>
<tr>
<th>Allele length(nt)</th>
<th>Caucasian population1</th>
<th>Indian Population2</th>
<th>Jat Sikh population3</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>0.006</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>248</td>
<td>0.013</td>
<td>0.02</td>
<td>x</td>
</tr>
<tr>
<td>244</td>
<td>x</td>
<td>0.069</td>
<td>x</td>
</tr>
<tr>
<td>240</td>
<td>0.117</td>
<td>0.158</td>
<td>0.088</td>
</tr>
<tr>
<td>236</td>
<td>0.026</td>
<td>0.133</td>
<td>0.163</td>
</tr>
<tr>
<td>232</td>
<td>0.065</td>
<td>0.079</td>
<td>0.113</td>
</tr>
<tr>
<td>228</td>
<td>0.097</td>
<td>0.152</td>
<td>0.150</td>
</tr>
<tr>
<td>224</td>
<td>0.032</td>
<td>0.177</td>
<td>0.250</td>
</tr>
<tr>
<td>220</td>
<td>0.247</td>
<td>0.177</td>
<td>0.213</td>
</tr>
<tr>
<td>218</td>
<td>x</td>
<td>0.006</td>
<td>x</td>
</tr>
<tr>
<td>216</td>
<td>x</td>
<td>0.02</td>
<td>0.013</td>
</tr>
<tr>
<td>212</td>
<td>0.221</td>
<td>x</td>
<td>0.013</td>
</tr>
<tr>
<td>208</td>
<td>x</td>
<td>0.006</td>
<td>x</td>
</tr>
<tr>
<td>204</td>
<td>0.156</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>196</td>
<td>0.013</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>172</td>
<td>0.006</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

1 Sharma and Litt (1992) 2 Mahajan et al. (1998), 3 Present study
the observed homozygosity. Because with less number of alleles small number of genotypic combinations can be possible this may lead to high homozygosity.

The data generated by the present investigation at D21S215 locus could not be compared with other populations as no such report was found on population data for D21S215 even after extensive literature search.

The allelic polymorphism at the D21S11 locus was first identified in Caucasian population by Sharma and Litt in 1992. The data on number of alleles observed, allele size and heterozygosity observed at D21S11 locus is summarised in table 1. The size of various alleles at D21S11 locus along with their gene frequency observed in the present study and other studies is reported in table 2. The results are compared and also represented graphically in figure 3.

The comparative results indicate that these populations (Caucasian, Indian and Jat Sikh) may have their origin from a common ancestral group as all have partially overlapping frequency distribution of the alleles at this locus. It is also evident that allele at 244 bp reported by Mahajan et al. (1998) with a frequency of 6.9%, is absent both from Caucasian population and Jat Sikh population. Similarly, the allele with 212 bp reported by Sharma and Litt (1992), is also observed in Jat Sikh population but not reported for Indian population by Mahajan et al. (1998). The allele with 218 and 244 bp, reported for Indian population, is not observed among the Jat Sikh samples studied as well in Caucasian population studied by Sharma and Litt (1992). Absence of the allele with size 264 bp, 248 bp, 204 bp, 196 bp and 172 bp from Jat Sikh population may indicate the absence of these alleles in the founder subgroup of Jat Sikh population. However, presence of allele having 216 bp in Indian, and Jat Sikh population may be due to some kind of genetic intermixing of these populations at some stage of their evolution.

The comparative analysis of this marker indicates that the founder subgroups of Indian populations studied by Mahajan et al. (1998) and that of Jat Sikhs may be different, but this is only a preliminary indication about the origin of Jat Sikhs, which needs to be confirmed by employing a data of large battery of microsatellite markers in Jat Sikhs and other Indian populations. If at any stage the indication provided by the present study is confirmed, this may confirm the concept of General Cunningham who held that Jats belong to a wave of immigrants that is different from the wave for populations belonging to original Aryan stock.

REFERENCES

